最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Fourier分析的那些事

2022-03-11 22:45 作者:子瞻Louis  | 我要投稿

已收入文集《Analysis》

在我第一期專欄里,推導(dǎo)了一個(gè)周期為T(mén)的函數(shù)g在滿足一定條件時(shí)可以寫(xiě)為以下形式,

  • g(u)%3D%5Ctilde%7Bg%7D%20(u)%3A%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20%5Cfrac%7B2%5Cpi%20nu%7D%7BT%7D%2Bb_n%5Csin%5Cfrac%7B2%5Cpi%20nu%7DT

這里采用記號(hào)%5Ctilde%20f表示f的Fourier級(jí)數(shù)或積分以區(qū)分原本的函數(shù)f

不過(guò)有一個(gè)問(wèn)題,在函數(shù)的某些“特殊”的點(diǎn)處它是否收斂呢?若收斂它又收斂到多少呢?比如下面的函數(shù)

A:(1,0)

在x=1處它的Fourier級(jí)數(shù)是怎么樣的呢?實(shí)際上關(guān)于這個(gè)三角級(jí)數(shù)的逐點(diǎn)收斂性研究通常非常微妙,盡管它在近代函數(shù)論中占據(jù)了重要地位,但對(duì)有逐點(diǎn)收斂于它本身的三角級(jí)數(shù)表示的函數(shù),這種函數(shù)類的內(nèi)部結(jié)構(gòu)至今也沒(méi)有描述清楚。不過(guò)本期當(dāng)然是不會(huì)討論太高深的問(wèn)題了

為了方便,,令x%3D%5Cfrac%7B2%5Cpi%20u%7DT,于是得到%5Ctilde%20f(x)是x的周期為2π的函數(shù),

%5Ctilde%20f(x)%3A%3D%5Ctilde%20g%5Cleft(%5Cfrac%20%7BTx%7D%7B2%5Cpi%7D%5Cright)%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20nx%2Bb_n%5Csin%20nx

其中

a_n%3D%5Cfrac1%5Cpi%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)%5Ccos%20nt%5Cmathrm%20dt%2C

b_n%3D%5Cfrac1%5Cpi%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)%5Csin%20nt%5Cmathrm%20dt

Riemann-Lebesgue引理

下面將敘述的是一個(gè)十分重要的引理,它是研究Fourier級(jí)數(shù)逐點(diǎn)收斂性的基礎(chǔ):

若局部可積函數(shù)f在區(qū)間(%5Calpha%2C%5Cbeta)上(至少在反常積分意義下)絕對(duì)可積,則

  • %5Clim_%7B%5Cmathbb%20R%5Cni%5Clambda%5Cto%5Cinfty%7D%5Cint_%5Calpha%5E%5Cbeta%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%3D0

這里%5Calpha%2C%5Cbeta均可以取正無(wú)窮或負(fù)無(wú)窮

證? 因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=f" alt="f">在(%5Calpha%2C%5Cbeta)上絕對(duì)可積,所以對(duì)任意%5Cepsilon%3E0,可以找到一個(gè)區(qū)間%5Ba%2Cb%5D%5Csubset%20(%5Calpha%2C%5Cbeta),使得對(duì)任何%5Clambda%5Cin%5Cmathbb%20R都有

%5Cleft%7C%5Cint_%5Calpha%5E%5Cbeta%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx-%5Cint_a%5Eb%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5Cright%7C%3C%5Cepsilon

此時(shí)f%5Ba%2Cb%5D上是Riemann可積的,設(shè)%5Ba%2Cb%5D的一個(gè)分割

%5C%7Ba%3Dx_0%3Cx_1%3C%5Cdots%3Cx_n%3Db%5C%7D

m_j%3A%3D%5Cinf_%7Bx%5Cin%5Bx_%7Bj-1%7D%2Cx_j%5D%7Df(x)

引入%5Ba%2Cb%5D上的分段常函數(shù)

g(x)%3Dm_j%2Cx_%7Bj-1%7D%5Cle%20x%5Cle%20x_j

%5Ceta%20%3E0%5Ba%2Cb%5D上Riemann可積,可得

%5Cbegin%7Baligned%7D%5Cleft%7C%5Cint_a%5Eb%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx-%5Cint_a%5Eb%20g(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5Cright%7C%26%5Cle%5Cint_a%5Eb%20%7Cf(x)-g(x)%7C%7Ce%5E%7Bi%5Clambda%20x%7D%7C%5Cmathrm%20d%7C%5C%5C%26%5Cle%5Cint_a%5Eb%7Cf(x)-g(x)%7C%5Cmathrm%20dx%5C%5C%26%3C(b-a)%5Cepsilon_1%5Cend%7Baligned%7D

又由于

%5Cbegin%7Baligned%7D%5Cint_a%5Eb%20g(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%26%3D%5Csum_%7Bj%3D1%7D%5En%5Cint_%7Bx_%7Bj-1%7D%7D%5E%7Bx_j%7Dm_je%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5C%5C%26%3D%5Cfrac1%7Bi%5Clambda%7D%5Csum_%7Bj%3D1%7D%5Enm_je%5E%7Bi%5Clambda%20x_j%7D-m_je%5E%7Bi%5Clambda%20x_%7Bj-1%7D%7D%5Cxrightarrow%7B%5Clambda%5Cto%5Cinfty%7D0%5Cend%7Baligned%7D

于是便得到

%5Cint_%5Calpha%5E%5Cbeta%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5Cxrightarrow%7B%5Clambda%5Cto%5Cinfty%7D0

%5Csquare%0A

此外,分離實(shí)部與虛部還可得當(dāng)%5Cmathbb%20R%5Cni%5Clambda%5Cto%5Cinfty時(shí)

%5Cint_%5Calpha%5E%5Cbeta%20f(x)%5Ccos%7B%5Clambda%20x%7D%5Cmathrm%20dx%5Cto0

%5Cint_%5Calpha%5E%5Cbeta%20f(x)%5Csin%7B%5Clambda%20x%7D%5Cmathrm%20dx%5Cto0

Dirichlet核與局部化原理

根據(jù)Euler公式,F(xiàn)ourier級(jí)數(shù)可寫(xiě)為如下形式

%5Ctilde%20f(x)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D

該級(jí)數(shù)理解為柯西主值意義下的級(jí)數(shù),即

%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%3A%3D%5Clim_%7BM%5Cto%5Cinfty%7D%5Csum_%7Bn%3D-M%7D%5EM

取其部分和,

%5Cbegin%7Baligned%7D%5Ctilde%20f_N(x)%26%3D%5Csum_%7Bn%3D-N%7D%5EN%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)%5Ccolor%7Bblue%7D%7B%5Csum_%7Bn%3D-N%7D%5ENe%5E%7Bin(x-t)%7D%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

記藍(lán)色部分為%5Cmathcal%20D_N(x-t),即

%5Cmathcal%20D_N(t)%3D%5Csum_%7Bn%3D-N%7D%5ENe%5E%7Bint%7D

稱它為Dirichlet核,顯然它有以下性質(zhì):

  1. %5Cforall%20N%5Cin%5Cmathbb%20N%2CA%5Cin%5Cmathbb%20R%2C%5Cfrac1%7B2%5Cpi%7D%5Cint_A%5E%7BA%2B2%5Cpi%7D%5Cmathcal%20D_N(t)%5Cmathrm%20dt%3D1

  2. %5Cmathcal%20D_N(t)%3D%5Cmathcal%20D_N(-t)

利用這兩條性質(zhì)以及%5Ctilde%20f_N的周期性,可得

%5Ctilde%20f_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%5Cpi(f(x%2Bt)%2Bf(x-t))%5Cmathcal%20D_N(t)%5Cmathrm%20dt

對(duì)Dirichlet核繼續(xù)計(jì)算,可得

%5Cbegin%7Baligned%7D%5Cmathcal%20D_N(t)%3D%5Csum_%7Bn%3D-N%7D%5ENe%5E%7Bint%7D%26%3D%5Cfrac%7Be%5E%7Bi(N%2B1)t%7D-e%5E%7BiNt%7D%7D%7Be%5E%7Bit%7D-1%7D%5C%5C%26%3D%5Cfrac%7Be%5E%7Bi(N%2B1%2F2)t%7D-e%5E%7B-i(N%2B1%2F2)t%7D%7D%7Be%5E%7Bit%2F2%7D-e%5E%7B-it%2F2%7D%7D%5C%5C%26%3D%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cend%7Baligned%7D

代回至部分和中,可得

%5Ctilde%20f_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%5Cpi(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cmathrm%20dt

然后可以試試將積分區(qū)間拆開(kāi)為%5B0%2C%5Cdelta)%5Ccup%5B%5Cdelta%2C%5Cpi%5D,其中%5Cdelta%3E0,

因?yàn)楫?dāng)%5Cdelta%5Cle%20t%5Cle%5Cpi時(shí),有0%3C%5Csin%5Cfrac%5Cdelta2%5Cle%5Csin%5Cfrac%20t2,所以根據(jù)Riemann-Lebesgue引理有

%5Cint_%5Cdelta%5E%5Cpi(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cmathrm%20dt%5Cxrightarrow%7BN%5Cto%5Cinfty%7D0

由此可得當(dāng)N%5Cto%5Cinfty時(shí),

%5Ctilde%20f_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%5Cdelta(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cmathrm%20dt%2Bo(1)

這個(gè)等式表明了函數(shù)的Fourier級(jí)數(shù)在一個(gè)點(diǎn)的收斂性完全取決于在以這個(gè)點(diǎn)為中心delta為半徑的鄰域內(nèi)的性質(zhì),這就是所謂的局部化原理。由于%5Cdelta可以任意小,所以局部化原理也可以簡(jiǎn)單表述為函數(shù)在x的任意小鄰域內(nèi)的性質(zhì)決定其Fourier級(jí)數(shù)的收斂性

觀察被積函數(shù),可以較自然的引出一個(gè)定義:

%5Cbar%20f(x)%3A%3D%5Clim_%7Bh%5Cto%2B0%7D%5Cfrac%7Bf(x%2Bh)%2Bf(x-h)%7D2

接著就是結(jié)論了

Fourier級(jí)數(shù)收斂性

先給出兩個(gè)定義:

  1. 定義f在x的左右極限:

    f(x%2B)%3A%3D%5Clim_%7Bh%5Cto%2B0%7Df(x%2Bh)%2C%5Cquad%20f(x-)%3A%3D%5Clim_%7Bh%5Cto%2B0%7Df(x-h)

  2. 函數(shù)f在點(diǎn)x連續(xù)或第一類間斷,若對(duì)充分小的%5Cdelta%3E0,存在M%3E0%2C0%3Ca%5Cle1,使

    %7Cf(x%5Cpm%20t)-f(x%5Cpm)%7C%3CMt%5Ea%2C(0%3Ct%3C%5Cdelta)

    則稱f在點(diǎn)x滿足H?lder條件,特別的,當(dāng)a=1是稱為Lipschitz條件

(定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C是周期為2π,在閉區(qū)間%5B-%5Cpi%2C%5Cpi%5D上絕對(duì)可積的函數(shù),若f在點(diǎn)x滿足H?lder條件,則其Fourier級(jí)數(shù)在x收斂,且

%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D%3D%5Cbar%20f(x)

證??f在點(diǎn)x滿足H?lder條件時(shí),對(duì)0%3Ct%3C%5Cdelta

%5Cfrac%7B%7Cf(x%5Cpm%20t)-f(x%5Cpm)%7C%7Dt%3CMt%5E%7B1-a%7D

由此可得

%5Cvarphi(t)%3A%3D%5Cfrac%7Bf(x%2Bt)-f(x%2B)%2Bf(x-t)-f(x-)%7Dt

在區(qū)間%5B0%2C%5Cdelta%5D上絕對(duì)可積。又有

%5Ctilde%20f_N(x)-%5Cbar%20f(x)%3D%5Cfrac1%7B%5Cpi%7D%5Cint_0%5E%5Cdelta%5Cvarphi(t)%5Cfrac%7Bt%7D%7B2%5Csin%5Cfrac%2012t%7D%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%5Cmathrm%20dt%2Bo(1)

%5Cdelta%5Cto0,此時(shí)2%5Csin%5Cfrac12t%5Csim%20t,再由Riemann-Lebesgue引理可知上式當(dāng)N%5Cto%5Cinfty趨于零,即

%5Clim_%7BN%5Cto%5Cinfty%7D%5Ctilde%20f_N(x)%3D%5Cbar%20f(x)

%5Csquare%0A

該定理可以同樣簡(jiǎn)訴為滿足H?lder條件的函數(shù)的Fourier級(jí)數(shù)收斂于它任意小的鄰域中的左右平均值,不難發(fā)現(xiàn)它正好與局部化引理相對(duì)應(yīng)

還有最后一步,Dini-Lipschitz判別法只給出了周期為2π的函數(shù)其Fourier級(jí)數(shù)收斂的充分條件,但因?yàn)樽铋_(kāi)始我們用了代換x%3D%5Cfrac%7B2%5Cpi%20u%7DT,這可以將任意一個(gè)周期為T(mén)的函數(shù)轉(zhuǎn)化為周期為2π的函數(shù),所以我們實(shí)際上是得到了對(duì)任意周期函數(shù)其Fourier級(jí)數(shù)收斂的充分條件?,F(xiàn)在再將x%3D%5Cfrac%7B2%5Cpi%20u%7DT代入回原式可得:

  • %5Cbar%20f%5Cleft(%5Cfrac%7B2%5Cpi%20u%7D%7BT%7D%5Cright)%3D%5Cbar%7Bg%7D%20(u)%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20%5Cfrac%7B2%5Cpi%20nu%7D%7BT%7D%2Bb_n%5Csin%5Cfrac%7B2%5Cpi%20nu%7DT

Fourier積分的收斂性

利用類似的方法,可將Fourier級(jí)數(shù)收斂的判別法推廣至Fourier積分,已知對(duì)非周期函數(shù),當(dāng)它滿足一定條件時(shí),有

  • f(x)%3D%5Ctilde%20f(x)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cunderbrace%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-2%5Cpi%20i%5Comega%20t%7D%5Cmathrm%20dt%5Cright)%7D_%7B%5Chat%20f(%5Comega)%7De%5E%7B2%5Cpi%20i%5Comega%20x%7D%5Cmathrm%20d%5Comega

這里的積分同樣也為主值意義下的積分,即

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%3A%3D%5Clim_%7BA%5Cto%5Cinfty%7D%5Cint_%7B-A%7D%5EA

(定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C是絕對(duì)可積的函數(shù),若它在點(diǎn)x處滿足Lipschitz條件,則其Fourier積分在點(diǎn)x處收斂于f左右極限的平均

證? A%3E0,

%5Ctilde%20f_A(x)%3D%5Cint_%7B-A%7D%5EA%20%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-2%5Cpi%20i%5Comega%20t%7D%5Cmathrm%20dt%5Cright)%7De%5E%7B2%5Cpi%20i%5Comega%20x%7D%5Cmathrm%20d%5Comega

因?yàn)閒絕對(duì)可積,所以這里可以合理的交換上式的積分次序,

%5Cbegin%7Baligned%7D%5Ctilde%20f_A(x)%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)%5Cleft(%5Cint_%7B-A%7D%5EAe%5E%7B2%5Cpi%20i%5Comega(x-t)%7D%5Cmathrm%20d%5Comega%5Cright)%5Cmathrm%20dt%5C%5C%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)%5Cfrac%7B%5Csin2%5Cpi%20A(x-t)%7D%7B%5Cpi%20(x-t)%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cint_0%5E%5Cinfty%20(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%7B2%5Cpi%20At%7D%7D%7B%5Cpi%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

因?yàn)镈irichlet積分

%5Cint_%7B0%7D%5E%5Cinfty%5Cfrac%7B%5Csin%7B2%5Cpi%20At%7D%7D%7Bt%7D%5Cmathrm%20dt%3D%5Cfrac%5Cpi%202

所以

%5Cbar%20f(x)%3D%5Cint_%7B0%7D%5E%5Cinfty(f(x%2B)%2Bf(x-))%5Cfrac%7B%5Csin%7B2%5Cpi%20At%7D%7D%7B%5Cpi%20t%7D%5Cmathrm%20dt

因此有

%5Cbegin%7Baligned%7D%5Ctilde%20f_A(x)-%5Cbar%20f(x)%26%3D%5Cfrac1%5Cpi%5Cint_0%5E%5Cinfty%20%5Cvarphi(t)%7B%5Csin%7B2%5Cpi%20At%7D%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%5Cpi%5Cint_0%5E%5Cdelta%5Cvarphi(t)%5Csin2%5Cpi%20At%5Cmathrm%20dt%2B%5Cfrac1%5Cpi%5Cint_%5Cdelta%5E%5Cinfty%5Cvarphi(t)%5Csin2%5Cpi%20At%5Cmathrm%20dt%5Cend%7Baligned%7D

其中

%5Cvarphi(t)%3A%3D%5Cfrac%7Bf(x%2Bt)-f(x%2B)%2Bf(x-t)-f(x-)%7Dt

f在點(diǎn)x滿足H?lder條件使得上式在%5B0%2C%5Cdelta%5D上絕對(duì)可積,根據(jù)Riemann-Lebesgue引理可知

%5Cfrac1%5Cpi%5Cint_0%5E%5Cdelta%5Cvarphi(t)%5Csin2%5Cpi%20At%5Cmathrm%20dt%5Cxrightarrow%7BA%5Cto%5Cinfty%7D0

而第二項(xiàng)又可以寫(xiě)成f(x-t)%2Cf(x%2Bt)%2Cf(x%2B)%2Cf(x-)的四個(gè)積分之和,對(duì)前兩個(gè)可以在此用Riemann-Lebesgue引理說(shuō)明他們趨于零,而后面兩個(gè)相對(duì)于積分是常因子,可以提到積分外,而根據(jù)Dirichlet積分的收斂性又可得后面兩個(gè)積分也趨于零,于是

%5Clim_%7BA%5Cto%20%5Cinfty%7D%5Ctilde%20f_A(x)%3D%5Cbar%20f(x)%0A

%5Csquare%0A

Fourier分析的那些事的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
竹山县| 淅川县| 义马市| 左云县| 建湖县| 屯昌县| 进贤县| 广水市| 江门市| 米林县| 三穗县| 永吉县| 嘉义市| 讷河市| 梁河县| 峨眉山市| 临洮县| 巴林右旗| 德昌县| 石林| 镇康县| 仙游县| 洪江市| 宝丰县| 岳普湖县| 丰原市| 尤溪县| 武陟县| 拜城县| 元阳县| 玉龙| 遵化市| 永德县| 宜兰市| 明星| 申扎县| 杨浦区| 连江县| 大竹县| 宣城市| 东兴市|