最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

高聯(lián)2019A卷幾何

2023-06-09 10:30 作者:AchoProMax  | 我要投稿


圖1

題目:如圖1,在銳角△ABC中,M是邊BC中點,點P在△ABC內(nèi),使得AP平分∠BAC.直線MP與△ABP,△ACP的外接圓分別相交于不同于點P的兩點D,E.

求證:若DE=MP,則BC=2BP.

思考過程:DE=MP是核心條件,但DE和MP相互轉(zhuǎn)化比較困難.因此將DE=MP翻譯為DP=EM.

假設(shè)結(jié)論成立,逆推得到BP=BM=CM,∠BPD=∠PMC.

很容易想到連接BD,EC(如圖2)

去證明△BPD≌△EMC

圖2

已有DP=ME,要想證明全等,顯然要找兩邊一夾角(否則可直接推出答案)

即證明∠MEC=∠BDP,BD=CE

∠MEC=∠PAC=∠PAB=∠PDB,角的證明完成

對于BD=CE,既然在兩對三角形之間已經(jīng)有等角,那么用正弦定理推是很好的選擇

BM/sin∠PDB=BD/sin∠DMB

CE/sin∠EMC=CM/sin∠EMC

兩式聯(lián)立即得BD=CE

那么證明就完成了

下面,給出證明過程

證明:

連接BD,CE

∵DE=MP?

∴DP=ME ①

∵∠MEC=∠PAC=∠PAB=∠PDB

∴∠MEC=∠PDB ②

∵BM/sin∠PDB=BD/sin∠DMB

??CE/sin∠EMC=CM/sin∠EMC

? M為BC中點

∴BD=CE ③

由①②③,△DBP≌△CEM

∴BP=CM=1/2BC

即BC=2BP

接下來,再給出官方解答(圖3)

圖3

這種證法不容易想到,大家可以學習一下

幾何圖像網(wǎng)址:https://www.desmos.com/geometry-beta/aoge0isrty?lang=zh-CN

制作不易,喜歡的話還請點贊轉(zhuǎn)發(fā)支持一下~

有其他解題方法或推薦的高聯(lián)幾何題可以寫在評論區(qū)或私信我


高聯(lián)2019A卷幾何的評論 (共 條)

分享到微博請遵守國家法律
二手房| 松原市| 莒南县| 湖口县| 台山市| 长宁县| 桐庐县| 万安县| 武陟县| 华容县| 会同县| 丽江市| 手游| 清丰县| 资源县| 宣汉县| 新龙县| 乐业县| 南雄市| 确山县| 清流县| 扎鲁特旗| 青海省| 丘北县| 浏阳市| 会昌县| 扎赉特旗| 广饶县| 丹东市| 即墨市| 永清县| 朝阳县| 榕江县| 娄底市| 新巴尔虎左旗| 青海省| 尉氏县| 麻阳| 黄梅县| 连南| 彩票|