【標(biāo)題速讀】【nbt】【2023年】【5-8月】

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。
1.Recording transcriptional histories. Human embryonic kidney cells express a protein-based ticker tape recorder stained with different colored dyes. The ticker tape designs from Lin et al. record single-cell transcriptional histories over time.
記錄轉(zhuǎn)錄歷史。人類胚胎腎細(xì)胞表達(dá)一種基于蛋白質(zhì)的自動(dòng)收?qǐng)?bào)機(jī)磁帶錄音機(jī),并用不同顏色的染料染色。?Lin 等人的收?qǐng)?bào)機(jī)磁帶設(shè)計(jì)記錄單細(xì)胞隨著時(shí)間的轉(zhuǎn)錄歷史。

2.High-throughput retrieval of target sequences from complex clone libraries using CRISPRi.
使用 CRISPRi 從復(fù)雜克隆文庫中高通量檢索目標(biāo)序列。
3.Time-tagged ticker tapes for intracellular recordings.
用于細(xì)胞內(nèi)記錄的帶有時(shí)間標(biāo)記的自動(dòng)收?qǐng)?bào)機(jī)磁帶。
4.Recording of cellular physiological histories along optically readable self-assembling protein chains.
沿著光學(xué)可讀的自組裝蛋白質(zhì)鏈記錄細(xì)胞生理歷史。
5.Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing.
無線、閉環(huán)、智能繃帶,配有集成傳感器和刺激器,可實(shí)現(xiàn)高級(jí)傷口護(hù)理和加速愈合。
6.Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
重新設(shè)計(jì)腺嘌呤脫氨酶 TadA-8e,以實(shí)現(xiàn)高效且特異性的基于 CRISPR 的胞嘧啶堿基編輯。
7.Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
將腺嘌呤堿基編輯器進(jìn)化為小型、高效、脫靶活性低的胞嘧啶堿基編輯器。
8.Improved cytosine base editors generated from TadA variants.
改進(jìn)了從 TadA 變體生成的胞嘧啶堿基編輯器。
9.Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR.
利用 ADAR 使用 RNA 傳感器進(jìn)行可編程真核蛋白質(zhì)合成。
10.Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag.
使用 MulTI-Tag 以單細(xì)胞分辨率對(duì)表觀遺傳景觀進(jìn)行多因素分析。
11.Protection of cell therapeutics from antibody-mediated killing by CD64 overexpression.
通過 CD64 過表達(dá)保護(hù)細(xì)胞治療免受抗體介導(dǎo)的殺傷。
===================================
1.Expansion microscopy. Micrograph of the mouse hindbrain with total protein content in cyan, lipids in magenta and presynaptic vesicles in yellow. Klimas et al. developed an expansion microscopy technique that retains nucleic acids, proteins and lipids without the need for a separate anchoring step.
膨脹顯微鏡。小鼠后腦的顯微照片,其中青色為總蛋白質(zhì)含量,洋紅色為脂質(zhì),黃色為突觸前囊泡??死R斯等人開發(fā)了一種擴(kuò)展顯微鏡技術(shù),無需單獨(dú)的錨定步驟即可保留核酸、蛋白質(zhì)和脂質(zhì)。

2.The expanding vistas of spatial transcriptomics.
空間轉(zhuǎn)錄組學(xué)的廣闊前景。
3.Identification of patient-specific CD4+ and CD8+ T cell neoantigens through HLA-unbiased genetic screens.
通過 HLA 無偏見遺傳篩查鑒定患者特異性 CD4+ 和 CD8+ T 細(xì)胞新抗原。
4.Integration of whole transcriptome spatial profiling with protein markers.
全轉(zhuǎn)錄組空間分析與蛋白質(zhì)標(biāo)記的整合。
5.Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag.
使用基于納米抗體的單細(xì)胞 CUT&Tag 進(jìn)行多模式染色質(zhì)分析。
6.Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution.
納米抗體栓系轉(zhuǎn)座能夠以單細(xì)胞分辨率進(jìn)行多因素染色質(zhì)分析。
7.scChIX-seq infers dynamic relationships between histone modifications in single cells.
scChIX-seq 推斷單細(xì)胞中組蛋白修飾之間的動(dòng)態(tài)關(guān)系。
8.In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice.
移植到人源化小鼠體內(nèi)的人腸道類器官中免疫組織的體內(nèi)發(fā)育。
9.Functional analysis of structural variants in single cells using Strand-seq.
使用 Strand-seq 對(duì)單細(xì)胞結(jié)構(gòu)變異進(jìn)行功能分析。
10.A proteome-wide atlas of drug mechanism of action.
藥物作用機(jī)制的全蛋白質(zhì)組圖譜。
11.Magnify is a universal molecular anchoring strategy for expansion microscopy.
Magnify 是一種用于擴(kuò)展顯微鏡的通用分子錨定策略。
12.Control-independent mosaic single nucleotide variant detection with DeepMosaic.
使用 DeepMosaic 進(jìn)行不依賴于控制的嵌合單核苷酸變異檢測。
===================================
1.Seeing cells with sound. Artistic impression of cells generating sound waves as a result of producing gas vesicles. Hurt et al. identify acoustic reporter genes that produce gas vesicles with strong non-linear ultrasound contrast.
用聲音看到細(xì)胞。細(xì)胞因產(chǎn)生氣泡而產(chǎn)生聲波的藝術(shù)印象。赫特等人識(shí)別產(chǎn)生具有強(qiáng)非線性超聲波的氣體囊泡的超聲差報(bào)告基因。

2.Accurate isoform discovery with IsoQuant using long reads.
使用長讀通過 IsoQuant 準(zhǔn)確發(fā)現(xiàn)異構(gòu)體。
3.Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria.
通過基因組挖掘聲學(xué)報(bào)告基因,用于實(shí)時(shí)體內(nèi)監(jiān)測腫瘤和腫瘤歸巢細(xì)菌。
4.Facile repurposing of peptide–MHC-restricted antibodies for cancer immunotherapy.
輕松重新利用肽-MHC 限制性抗體用于癌癥免疫治療。
5.A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments.
基因編碼傳感器測量不同神經(jīng)元區(qū)室的暫時(shí)催產(chǎn)素釋放。
6.Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks.
通過將野生型芽嫁接到轉(zhuǎn)基因供體砧木上,對(duì)植物進(jìn)行可遺傳的非轉(zhuǎn)基因基因組編輯。
7.Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases.
使用工程型 VK CRISPR 相關(guān)轉(zhuǎn)座酶進(jìn)行精確剪切和粘貼 DNA 插入。
8.High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform.
使用功能遺傳學(xué)篩選平臺(tái)進(jìn)行高通量、靶向 MHC I 類免疫肽組學(xué)。
9.Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination.
通過酶輔助腺苷脫氨對(duì) N6-甲基腺苷進(jìn)行全轉(zhuǎn)錄組分析和定量。
10.A spatial genome aligner for resolving chromatin architectures from multiplexed DNA FISH.
用于從多重 DNA FISH 中解析染色質(zhì)結(jié)構(gòu)的空間基因組比對(duì)儀。
11.Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design.
使用貝葉斯實(shí)驗(yàn)設(shè)計(jì)在納米孔測序過程中動(dòng)態(tài)、自適應(yīng)采樣。
===================================
1.Nanopores. Artist’s impression of a protein translocating through a nanopore. Yu et al. identify conditions that allow complete proteins to translocate through a nanopore when driven by an electroosm.
納米孔。藝術(shù)家對(duì)蛋白質(zhì)通過納米孔移位的印象。于等人確定在電滲驅(qū)動(dòng)下允許完整蛋白質(zhì)通過納米孔移位的條件。

2.Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase.
通過將腺嘌呤堿基編輯器與 N-甲基嘌呤 DNA 糖基化酶融合進(jìn)行可編程 A 到 Y 堿基編輯。
3.Solid-phase capture and profiling of open chromatin by spatial ATAC.
通過空間 ATAC 對(duì)開放染色質(zhì)進(jìn)行固相捕獲和分析。
4.Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms.
工程活細(xì)菌可抑制小鼠肺部的銅綠假單胞菌感染并溶解氣管內(nèi)管生物膜。
5.Large language models generate functional protein sequences across diverse families.
大型語言模型生成跨不同家族的功能蛋白質(zhì)序列。
6.RNA recording in single bacterial cells using reprogrammed tracrRNAs.
使用重新編程的 tracrRNA 在單個(gè)細(xì)菌細(xì)胞中記錄 RNA。
7.A universal deep-learning model for zinc finger design enables transcription factor reprogramming.
用于鋅指設(shè)計(jì)的通用深度學(xué)習(xí)模型可以實(shí)現(xiàn)轉(zhuǎn)錄因子重編程。
8.Unidirectional single-file transport of full-length proteins through a nanopore.
通過納米孔單向單列傳輸全長蛋白質(zhì)。
9.Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening.
3D 染色質(zhì)組織的細(xì)胞類型特異性預(yù)測可實(shí)現(xiàn)計(jì)算機(jī)基因篩查的高通量。
10.Predicting prime editing efficiency and product purity by deep learning.
通過深度學(xué)習(xí)預(yù)測主要編輯效率和產(chǎn)品純度。
11.Real-time, volumetric imaging of radiation dose delivery deep into the liver during cancer treatment.
在癌癥治療過程中,對(duì)肝臟深處的輻射劑量進(jìn)行實(shí)時(shí)體積成像。