最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

學(xué)不明白的數(shù)學(xué)分析(五十七)

2023-02-21 12:03 作者:不能吃的大魚  | 我要投稿

好消息:反常積分結(jié)束了!

壞消息:含參變量積分開始了……

是的,就如我們之前所說(shuō)的一樣,在結(jié)束反常積分的部分之后,我們沒(méi)有按照參考教材的順序,去介紹Fourier級(jí)數(shù)的內(nèi)容,而是為了保證連貫性,選擇直接跟上含參變量積分的部分,最后再利用已經(jīng)掌握的各種知識(shí),集中分析有關(guān)Fourier級(jí)數(shù)的部分。

那么,我們就開始吧!


Chapter? Eighteen? 含參變量積分

18.1? 含參變量的常義積分

對(duì)于一般的函數(shù)而言,其積分的結(jié)果是很明確的(能不能一般可求暫且不說(shuō))。但是,如果函數(shù)本身不是被自變量唯一確定的,而是有一個(gè)參數(shù)來(lái)參與決定函數(shù)本身,那么,對(duì)于這樣的含參變量的函數(shù),其積分結(jié)果就不一定再唯一了,很有可能是關(guān)于參數(shù)的一個(gè)函數(shù)。這個(gè)時(shí)候,我們可以將參數(shù)視作函數(shù)的另一個(gè)變量,即:

f_u(x)%3Df(x%2Cu)%5Cquad(x%5Cin%5Ba%2Cb%5D%EF%BC%8Cu%5Cin%5B%5Calpha%2C%5Cbeta%5D)

其中,二元函數(shù)f(x%2Cu)在閉矩形:

D%3D%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上滿足一定的性質(zhì),u%5Cin%5B%5Calpha%2C%5Cbeta%5D為相對(duì)于一元函數(shù)f_u(x)而言的參數(shù)。

這樣,有二重積分的基本知識(shí),我們就不難理解,此時(shí)對(duì)自變量x進(jìn)行積分,得到的其實(shí)是一個(gè)關(guān)于參數(shù)的函數(shù):

%5Cvarphi%20(u)%3D%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx

(這實(shí)際上也就是累次積分的第一層。)

我們將這樣的由一層積分得到的關(guān)于參數(shù)的函數(shù),稱為函數(shù)f_u(x)含參變量u的常義積分。

對(duì)應(yīng)地,如果上述積分關(guān)于自變量為反常積分,就稱之為含參變量反常積分。

為了讓大家更好理解含參變量積分,我們將其與函數(shù)項(xiàng)級(jí)數(shù)作類比。事實(shí)上,我們知道,所謂函數(shù)項(xiàng)級(jí)數(shù),就是:

%5Csum_%7Bn%3D0%7D%5E%E2%88%9E%20u_n(x)%3D%5Csum_%7Bn%3D0%7D%5E%E2%88%9E%20u(n%2Cx)

實(shí)際上,函數(shù)項(xiàng)級(jí)數(shù)就是以x為參數(shù)的函數(shù),以n為求和變量(類比于積分變量)的一種離散求和(類比于連續(xù)求和,即積分)。在二者之間,x對(duì)應(yīng)于u,n對(duì)應(yīng)于x。

接下來(lái),我們就要開始研究,含參變量常義積分的分析性質(zhì)了。首先,我們要問(wèn)的就是,在什么條件下,含參變量常義積分是連續(xù)的?

按照連續(xù)的定義,我們就是要考慮,二元函數(shù)f(x%2Cu)滿足什么條件時(shí),有:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20%5Cdelta%20%EF%BC%9E0%EF%BC%8C%5Cforall%20u%5Cin%20%5Cmathring%7BU%7D(u_0%2C%5Cdelta)%EF%BC%8C%5Cbigg%7C%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx%20-%20%5Cint_a%5Ebf(x%2Cu_0)%5Ctext%20dx%5Cbigg%7C%EF%BC%9C%5Cvarepsilon%20.

(其中,u_0%5Cin%5B%5Calpha%2C%5Cbeta%5D為任意一點(diǎn)。)

我們做一些簡(jiǎn)單的推導(dǎo):

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cbigg%7C%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx-%5Cint_a%5Ebf(x%2Cu_0)%5Ctext%20dx%5Cbigg%7C%26%3D%5Cbigg%7C%5Cint_a%5Eb(f(x%2Cu)-f(x%2Cu_0))%5Ctext%20dx%5Cbigg%7C%5C%5C%0A%26%5Cle%20%5Cint_a%5Eb%7Cf(x%2Cu)-f(x%2Cu_0)%7C%5Ctext%20dx%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

基于此,我們就能知道,如果二元函數(shù)在任意固定x時(shí),關(guān)于參數(shù)u連續(xù),那么顯然就能夠得到含參變量常義積分連續(xù)。但是,這一條件不方便判斷與利用,我們可以犧牲一定的判定范圍,來(lái)?yè)Q取一個(gè)好的判定條件。(當(dāng)然,就這一條件而言,其實(shí)也不是一個(gè)必要的條件,僅僅是保證了充分性罷了。)比如說(shuō):

二元函數(shù)f(x%2Cu)在閉矩形:

D%3D%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),則含參變量常義積分:

%5Cvarphi%20(u)%3D%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx

在區(qū)間%5B%5Calpha%2C%5Cbeta%5D上連續(xù),即:

%5Clim_%7Bu%5Cto%20u_0%7D%20%5Cvarphi%20%20(u)%3D%5Clim_%7Bu%5Cto%20u_0%7D%20%5Cbigg(%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%3D%5Cint_a%5Eb%20%5Cbigg(%5Clim_%7Bu%5Cto%20u_0%7D%20%20f(x%2Cu)%5Cbigg)%5Ctext%20dx

(極限與積分可以交換次序)

因?yàn)椋?/p>

%5Csqrt%7B(x-x_0)%5E2%2B(u-u_0)%5E2%7D%20%5Cge%20%7Cu-u_0%7C

所以這一結(jié)論是顯然的。

接下來(lái),我們要考慮有關(guān)含參變量常義積分的微分性質(zhì)。我們知道,對(duì)于一元函數(shù)而言,可微與可導(dǎo)的操作是一致的。因此,我們實(shí)際上只需要討論:

%5Clim_%7Bu%5Cto%20u_0%7D%20%5Cfrac%7B%5Cvarphi%20(u)-%5Cvarphi%20(u_0)%7D%7Bu-u_0%7D%20%20%3D%5Clim_%7Bh%5Cto%200%7D%20%5Cfrac%7B%5Cvarphi%20(u_0%2Bh)-%5Cvarphi%20(u_0)%7D%7Bh%7D%20

是否存在且有限的問(wèn)題。

還是一樣,我們做一些簡(jiǎn)單的推導(dǎo):

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cfrac%7B%5Cvarphi%20(u_0%2Bh)-%5Cvarphi%20(u_0)%7D%7Bh%7D%0A%26%3D%5Cfrac%7B%20%5Cint_a%5Ebf(x%2Cu_0%2Bh)%5Ctext%20dx-%5Cint_a%5Ebf(x%2Cu_0)%5Ctext%20dx%7D%7Bh%7D%5C%5C%0A%26%3D%5Cint_a%5Eb%5Cfrac%7Bf(x%2Cu_0%2Bh)-f(x%2Cu_0)%7D%7Bh%7D%5Ctext%20dx%5C%5C%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

又因?yàn)榇藭r(shí):

f(x%2Cu_0%2Bh)-f(x%2Cu_0)%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%20(x%2Cu_0%2B%5Ctheta%20h)h%20%5Cquad(%5Ctheta%20%5Cin%20%5B0%2C1%5D)

所以,如果此時(shí)二元函數(shù)的偏導(dǎo)數(shù)%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu)%20在區(qū)間%5B%5Calpha%2C%5Cbeta%5D上存在且連續(xù),則就有:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Clim_%7Bh%5Cto0%7D%20%20%5Cfrac%7B%5Cvarphi%20(u_0%2Bh)-%5Cvarphi%20(u_0)%7D%7Bh%7D%0A%26%3D%5Clim_%7Bh%5Cto0%7D%20%20%5Cfrac%7B%20%5Cint_a%5Ebf(x%2Cu_0%2Bh)%5Ctext%20dx-%5Cint_a%5Ebf(x%2Cu_0)%5Ctext%20dx%7D%7Bh%7D%5C%5C%0A%26%3D%5Clim_%7Bh%5Cto0%7D%20%5Cint_a%5Eb%5Cfrac%7Bf(x%2Cu_0%2Bh)-f(x%2Cu_0)%7D%7Bh%7D%5Ctext%20dx%5C%5C%0A%26%3D%5Clim_%7Bh%5Cto0%7D%20%5Cint_a%5Eb%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu_0%2B%5Ctheta%20h)%20%5Ctext%20dx%5C%5C%0A%26%3D%5Cint_a%5Eb%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu_0)%20%5Ctext%20dx%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

我們也強(qiáng)化一下條件,以便我們使用:

如果二元函數(shù)f(x%2Cu)在閉矩形:

D%3D%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),且%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu)%20也連續(xù),則含參變量常義積分:

%5Cvarphi%20(u)%3D%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx

在區(qū)間%5B%5Calpha%2C%5Cbeta%5D上可微,且有:

%5Cfrac%7B%5Ctext%20d%5Cvarphi%20(u)%7D%7B%5Ctext%20du%7D%20%3D%5Cfrac%7B%5Ctext%20d(%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx)%7D%7B%5Ctext%20du%7D%20%3D%5Cint_a%5Eb%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%20(x%2Cu)%5Ctext%20dx

至于含參變量常義積分的可積性質(zhì),如果我們完全將含參變量函數(shù)看做是二元函數(shù),那么由二重積分的理論,我們很容易想到:

%5Ciint_Df(x%2Cu)%5Ctext%20dx%5Ctext%20du%3D%5Cint_%5Calpha%5E%5Cbeta%20%5Cbigg(%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%5Ctext%20du%3D%5Cint_a%5Eb%5Cbigg(%5Cint_%5Calpha%5E%5Cbeta%20f(x%2Cu)%5Ctext%20du%5Cbigg)%5Ctext%20dx

那么我們下一步要考慮的,就是如何保證可積性。顯然,保證f(x%2Cu)連續(xù)是能夠做到這一點(diǎn)的。而綜合上面有關(guān)連續(xù)性和可微性的討論結(jié)果,這一條件是我們能夠接受的。因此,就有:

如果二元函數(shù)f(x%2Cu)在閉矩形:

D%3D%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),則含參變量常義積分:

%5Cvarphi%20(u)%3D%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx

在區(qū)間%5B%5Calpha%2C%5Cbeta%5D上可積,且有:

%5Cint_%5Calpha%5E%5Cbeta%20%5Cbigg(%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%5Ctext%20du%3D%5Cint_a%5Eb%5Cbigg(%5Cint_%5Calpha%5E%5Cbeta%20f(x%2Cu)%5Ctext%20du%5Cbigg)%5Ctext%20dx

嚴(yán)格證明留給大家。(定理1)

(如果采用上述思路,只需要證明f(x%2Cu)連續(xù)能夠保證重積分和累次積分都能存在即可;如果換一種思路,就需要利用含參變量常義積分的連續(xù)性定理與可微性定理。)

討論完矩形區(qū)域上的含參變量常義積分,考慮到重積分的部分的順序,我們接下來(lái)可以討論一下一般有界集合上的含參變量常義積分,也即:

F(u%2C%5Cxi%2C%5Ceta)%3D%5Cint_%5Ceta%5E%5Cxi%20f(x%2Cu)%5Ctext%20dx%3D%5Cint_%7B%5Ceta(u)%7D%5E%7B%5Cxi(u)%7D%20f(x%2Cu)%5Ctext%20dx%3DF(u%2C%5Cxi(u)%2C%5Ceta(u))%3D%5Cpsi%20(u)

按照順序,我們還是討論連續(xù)、可微以及可積的性質(zhì)。但是,實(shí)際上,在二重積分部分,我們已經(jīng)將二維有界集合上的重積分有關(guān)的內(nèi)容已經(jīng)討論過(guò)了,這里只不過(guò)是將很多條件加強(qiáng)了,犧牲了一定的判定范圍,因此我們不再仔細(xì)討論了。

對(duì)于這一含參變量常義積分,如果想要保證其連續(xù),我們還是假定所涉及到的各個(gè)函數(shù)都是連續(xù)的,那么就有:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%7CF(u%2C%5Cxi(u)%2C%5Ceta(u))-F(u_0%2C%5Cxi(u_0)%2C%5Ceta(u_0))%7C%0A%26%3D%5Cbigg%7C%5Cbigg(%5Cint_%7B%5Ceta(u)%7D%5E%7B%5Cxi%20(u)%7D-%5Cint_%7B%5Ceta(u_0)%7D%5E%7B%5Cxi%20(u_0)%7D%5Cbigg)f(x%2Cu)%5Ctext%20dx%2B%5Cint_%7B%5Ceta(u_0)%7D%5E%7B%5Cxi%20(u_0)%7D(f(x%2Cu)-f(x%2Cu_0))%5Ctext%20dx%5Cbigg%7C%5C%5C%0A%26%5Cle%20%5Cint_%7B%5Ceta(u_0)%7D%5E%7B%5Cxi%20(u_0)%7D%7Cf(x%2Cu)-f(x%2Cu_0)%7C%5Ctext%20dx%2B%5Cbigg%7C%5Cint_%7B%5Ceta(u)%7D%5E%7B%5Ceta%20(u_0)%7Df(x%2Cu)%5Ctext%20dx%5Cbigg%7C%2B%5Cbigg%7C%5Cint_%7B%5Cxi(u_0)%7D%5E%7B%5Cxi%20(u)%7Df(x%2Cu)%5Ctext%20dx%5Cbigg%7C%5C%5C%0A%26%EF%BC%9C%7C%5Cxi(u_0)-%5Ceta(u_0)%7C%5Cvarepsilon%20%2BM%7C%5Ceta(u)-%5Ceta(u_0)%7C%2BM%7C%5Cxi(u)-%5Cxi(u_0)%7C%5C%5C%0A%26%EF%BC%9C(2M%2B%7C%5Cxi(u_0)-%5Ceta(u_0)%7C)%5Cvarepsilon%20%5C%5C%0A%26%5Cle(2M%2BM'%2BM'')%5Cvarepsilon%20.%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

這里:

M%3D%5Cmax%5C%7B%7Cf(x%2Cu)%7C%3A(x%2Cu)%5Cin%5B%5Ceta(u)%2C%5Cxi(u)%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D%5C%7D

f(x%2Cu)%EF%BC%8C%5Ceta(u)%EF%BC%8C%5Cxi(u)均是連續(xù)函數(shù);

%7C%5Ceta(u)%7C%5Cle%20%20%20M'%EF%BC%8C%7C%5Cxi(u)%7C%5Cle%20M''

于是,我們就知道,%5Cpsi(u)是連續(xù)的。

完整地?cái)⑹鲆槐椋褪沁@樣的結(jié)論:

設(shè)f(x%2Cu)%EF%BC%8C%5Ceta(u)%EF%BC%8C%5Cxi(u)均是對(duì)應(yīng)定義集合上的連續(xù)函數(shù),其中:

(x%2Cu)%5Cin%5B%5Ceta(u)%2C%5Cxi(u)%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D%5Csubset%20%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

更進(jìn)一步,我們讓f(x%2Cu)在:

D%3D%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),則:

%5Cpsi(u)%3DF(u%2C%5Cxi(u)%2C%5Ceta(u))%3D%5Cint_%7B%5Ceta(u)%7D%5E%7B%5Cxi(u)%7D%20f(x%2Cu)%5Ctext%20dx

%5B%5Calpha%2C%5Cbeta%5D上連續(xù)。

最后我們給出%5Cpsi%20(u)的可微性質(zhì):

設(shè)f(x%2Cu)%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu)%20都在閉矩形:

D%3D%5Ba%2Cb%5D%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),且%5Ceta(u)%EF%BC%8C%5Cxi(u)均在%5B%5Calpha%2C%5Cbeta%5D上可微,則:

%5Cpsi(u)%3DF(u%2C%5Cxi(u)%2C%5Ceta(u))%3D%5Cint_%7B%5Ceta(u)%7D%5E%7B%5Cxi(u)%7D%20f(x%2Cu)%5Ctext%20dx

%5B%5Calpha%2C%5Cbeta%5D上可微,且有:

%5Cpsi%20'(u)%3D%5Cint_%7B%5Ceta(u)%7D%5E%7B%5Cxi(u)%7D%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu)%5Ctext%20dx%20%2Bf(%5Cxi(u)%2Cu)%5Cxi%20'(u)-f(%5Ceta(u)%2Cu)%5Ceta%20'(u)

(定理2)


思考:

  1. 證明定理1;

  2. 證明定理2;

  3. 計(jì)算:

    (1)

    %5Clim_%7Bu%5Cto0%7D%20%5Cint_%7B-1%7D%5E1%20%5Csqrt%7Bx%5E2%2Bu%5E2%7D%20%5Ctext%20dx%20

    (2)

    %5Clim_%7Bu%5Cto0%7D%20%5Cint_0%5E2%20x%5E2%5Ccos%20ux%20%5Ctext%20dx

    (3)

    %5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%5Cfrac%7B%20%5Carctan%20(a%5Ctan%20x)%7D%7B%5Ctan%20x%7D%20%5Ctext%20dx

  4. F''(u),其中:

    F(u)%3D%5Cint_0%5Eu%20(x%2Bu)f(x)%5Ctext%20dx

  5. 證明:設(shè)%5Cvarphi%EF%BC%8C%20%5Cpsi%20分別二階可導(dǎo)和一階可導(dǎo),則:

    f(x%2Cu)%3D%20%5Cfrac%7B1%7D%7B2%7D%20(%5Cvarphi(x-au)%2B%5Cvarphi(x%2Bau))%2B%5Cfrac%7B1%7D%7B2a%7D%20%5Cint_%7Bx-au%7D%5E%7Bx%2Bau%7D%5Cpsi%20(t)%5Ctext%20dt

    滿足:

    %5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20u%5E2%7D%20%3Da%5E2%5Cfrac%7B%5Cpartial%20%5E2%20f%7D%7B%5Cpartial%20x%5E2%7D%20

  6. 證明:對(duì)任意u%5Cin%20%5Cmathbf%20R,有:

    %5Cint_0%5E%7B2%5Cpi%7D%20e%5E%7Bu%5Ccos%20x%7D%5Ccos(u%5Csin%20x)%20%5Ctext%20dx%3D2%5Cpi


最後の最後に、ありがとうございました!

學(xué)不明白的數(shù)學(xué)分析(五十七)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
临澧县| 芜湖县| 乐清市| 红原县| 铜陵市| 禹城市| 太和县| 岳阳市| 旬邑县| 乌审旗| 永丰县| 庄浪县| 宜兴市| 祥云县| 益阳市| 仙桃市| 潢川县| 大新县| 陆河县| 陇川县| 商南县| 临邑县| 额尔古纳市| 专栏| 都昌县| 平定县| 鸡西市| 平和县| 灌阳县| 永清县| 福州市| 平乡县| 平潭县| 腾冲县| 阳西县| 蒙阴县| 永安市| 三亚市| 磴口县| 启东市| 青铜峡市|