【標(biāo)題速讀】【nbe】【2023年】【5-8月】

聲明:本專欄主要對生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯誤請諒解。
1.Peptide-boosted uptake of CRISPR enzymes. This issue highlights that prime editing can efficiently correct the sickle-cell allele in patient haematopoietic stem cells, a Cas9-based gene therapy for Huntington’s disease tested in pigs, the efficient peptide-mediated delivery of CRISPR enzymes, a method for the knock-in and stable expression of large payloads in primary human cells, that adding cytosine stretches to the 5′ end of single-guide RNAs constrains the activity of Cas9, and a library of cytosine base editors for the precise ablation of every mtDNA protein-coding gene in the mouse mitochond.
肽增強 CRISPR 酶的吸收。本期重點強調(diào),初等編輯可以有效糾正患者造血干細胞中的鐮狀細胞等位基因、在豬身上測試的基于 Cas9 的亨廷頓病基因療法、高效肽介導(dǎo)的 CRISPR 酶遞送、一種基因敲入方法以及在原代人類細胞中大有效負載的穩(wěn)定表達,在單引導(dǎo) RNA 的 5' 端添加胞嘧啶會限制 Cas9 的活性,以及用于精確消除每個 mtDNA 蛋白編碼基因的胞嘧啶堿基編輯器庫小鼠線粒體。

2.Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice.
患者造血干細胞的體外引物編輯在植入小鼠體內(nèi)后可挽救鐮狀細胞病表型。
3.Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington’s disease.
Cas9介導(dǎo)的亨廷頓病豬模型中擴展的CAG重復(fù)序列的替換。
4.Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes.
肽介導(dǎo)的 CRISPR 酶遞送,用于有效編輯原代人淋巴細胞。
5.Stable expression of large transgenes via the knock-in of an integrase-deficient lentivirus.
通過整合酶缺陷型慢病毒的敲入實現(xiàn)大轉(zhuǎn)基因的穩(wěn)定表達。
6.Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs.
通過向單引導(dǎo) RNA 添加胞嘧啶延伸來優(yōu)化 Cas9 活性。
7.A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome.
堿基編輯器庫,用于精確消除小鼠線粒體基因組中的所有蛋白質(zhì)編碼基因。
======================================
1.A vision transformer for decoding surgical activity. This issue highlights representation-learning strategies for processing multimodal inputs and for improving the robustness and training efficiency of machine-learning models, a vision transformer for decoding surgical activity, a machine-learning pipeline for mining the entire space of polypeptide-chain sequences to identify potent antimicrobial peptides, ensembles of machine-learning models for explaining the molecular basis of synergetic drug combinations, and a machine-learning model that links genome sequence and non-coding RNA expression at the cell.
用于解碼手術(shù)活動的視覺轉(zhuǎn)換器。本期重點介紹了用于處理多模態(tài)輸入、提高機器學(xué)習(xí)模型的魯棒性和訓(xùn)練效率的表示學(xué)習(xí)策略、用于解碼手術(shù)活動的視覺轉(zhuǎn)換器、用于挖掘整個多肽鏈序列空間以識別的機器學(xué)習(xí)管道。強效抗菌肽、用于解釋協(xié)同藥物組合的分子基礎(chǔ)的機器學(xué)習(xí)模型集合,以及將細胞中的基因組序列和非編碼 RNA 表達聯(lián)系起來的機器學(xué)習(xí)模型。

2.A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics.
基于變壓器的表示學(xué)習(xí)模型,可統(tǒng)一處理用于臨床診斷的多模態(tài)輸入。
3.Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging.
用于診斷成像的自監(jiān)督機器學(xué)習(xí)的穩(wěn)健且數(shù)據(jù)高效的泛化。
4.A vision transformer for decoding surgeon activity from surgical videos.
用于從手術(shù)視頻中解碼外科醫(yī)生活動的視覺轉(zhuǎn)換器。
5.Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences.
通過挖掘整個肽序列空間的機器學(xué)習(xí)管道來識別有效的抗菌肽。
6.Uncovering expression signatures of synergistic drug responses via ensembles of explainable machine-learning models.
通過可解釋的機器學(xué)習(xí)模型的集合揭示協(xié)同藥物反應(yīng)的表達特征。
7.Prediction of the cell-type-specific transcription of non-coding RNAs from genome sequences via machine learning.
通過機器學(xué)習(xí)從基因組序列預(yù)測非編碼 RNA 的細胞類型特異性轉(zhuǎn)錄。
======================================
1.High-throughput imaging of single-cell secretions. This issue highlights a caller of genomic variants that leverages machine learning to reduce read-mapping costs, a method for the in vivo screening of hydrogels for antifibrotic properties, collagen-replacement therapy via mRNA-encapsulating extracellular vesicles delivered intradermally via microneedles, the high-throughput in vivo screening of libraries of nanoparticle formulations for the delivery of mRNA to the liver, an investigation of the effects of the spatial distribution and placement of antigens in nanoparticle-based cancer vaccines, a subcutaneous Zika vaccine consisting of a hydrogel electrostatically entrapping the live virus, and a microwell array for the image-based spatiotemporal profiling of single-cell secretions.
單細胞分泌物的高通量成像。本期重點介紹了基因組變異的調(diào)用者,該變異利用機器學(xué)習(xí)來降低讀取映射成本,一種體內(nèi)篩選水凝膠抗纖維化特性的方法,通過微針皮內(nèi)遞送的封裝 mRNA 的細胞外囊泡進行膠原蛋白替代療法,高用于將 mRNA 遞送至肝臟的納米顆粒制劑庫的體內(nèi)篩選、基于納米顆粒的癌癥疫苗中抗原的空間分布和放置的影響的研究、由靜電捕獲活體的水凝膠組成的皮下寨卡疫苗病毒,以及用于基于圖像的單細胞分泌物時空分析的微孔陣列。

2.Ultrafast prediction of somatic structural variations by filtering out reads matched to pan-genome k-mer sets.
通過過濾掉與泛基因組 k-mer 集匹配的讀數(shù),超快速預(yù)測體細胞結(jié)構(gòu)變異。
3.Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate.
通過將帶有細胞條形碼的藻酸鹽植入小鼠和非人類靈長類動物體內(nèi),篩選水凝膠的抗纖維化特性。
4.Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy.
皮內(nèi)遞送封裝 mRNA 的細胞外囊泡,用于膠原蛋白替代療法。
5.Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery.
肽編碼 mRNA 條形碼,用于高通量體內(nèi)篩選用于 mRNA 遞送的脂質(zhì)納米粒子庫。
6.Multi-antigen spherical nucleic acid cancer vaccines.
多抗原球形核酸癌癥疫苗。
7.Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel.
通過將活病毒捕獲在皮下自我輔助水凝膠中來對抗寨卡病毒。
8.High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays.
通過等離子體微孔陣列對單細胞分泌物進行高通量時空監(jiān)測。
======================================
1.Imaging two PET tracers simultaneously. This issue highlights polarimetric endoscopy for the detection of laryngeal lesions, the imaging of posterior scleral birefringence to predict the onset of myopia, the magnetic resonance spectroscopic imaging of the metabolism of glucose and neurotransmitters in the human brain, the quantification of intratumoural heterogeneity via PET–MRI and machine learning, the simultaneous imaging of two PET tracers, and lens-free holography and deep learning for the quantification of v.
同時對兩個 PET 示蹤劑進行成像。本期重點介紹用于檢測喉部病變的偏振內(nèi)窺鏡、用于預(yù)測近視發(fā)病的后鞏膜雙折射成像、人腦中葡萄糖和神經(jīng)遞質(zhì)代謝的磁共振波譜成像、通過 PET 量化腫瘤內(nèi)異質(zhì)性MRI 和機器學(xué)習(xí)、兩個 PET 示蹤劑的同時成像以及用于 v 量化的無透鏡全息術(shù)和深度學(xué)習(xí)。

2.Surgical polarimetric endoscopy for the detection of laryngeal cancer.
用于檢測喉癌的外科偏振內(nèi)窺鏡檢查。
3.Posterior scleral birefringence measured by triple-input polarization-sensitive imaging as a biomarker of myopia progression.
通過三輸入偏振敏感成像測量后鞏膜雙折射作為近視進展的生物標(biāo)志物。
4.1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7?T in the human brain.
人腦中氘化葡萄糖和 7 T 神經(jīng)遞質(zhì)代謝的 1H 磁共振波譜成像。
5.Quantification of intratumoural heterogeneity in mice and patients via machine-learning models trained on PET–MRI data.
通過基于 PET-MRI 數(shù)據(jù)訓(xùn)練的機器學(xué)習(xí)模型對小鼠和患者的腫瘤內(nèi)異質(zhì)性進行量化。
6.Simultaneous quantitative imaging of two PET radiotracers via the detection of positron–electron annihilation and prompt gamma emissions.
通過檢測正電子-電子湮滅和瞬發(fā)伽馬發(fā)射,對兩種 PET 放射性示蹤劑進行同步定量成像。
7.Rapid and stain-free quantification of viral plaque via lens-free holography and deep learning.
通過無透鏡全息術(shù)和深度學(xué)習(xí)對病毒斑塊進行快速、免染色定量。