視頻 BV1bz411h7h9 定理證明
定理1.
設(shè)PF1=c,PF2=b,∠F1PB=α,∠F2PB=β
SΔABC
=SΔPF1B+SΔPF2B
即bcsin(α+β)/2
=(csinα+bsinβ)AD/2
即sin(α+β)/AD
=sinα/b+sinβ/c
得證
定理2.
AD為角分線(xiàn)
有AB/AC=BD/CD
即CD·AB
=BD·AC
即(BD+CD)·CD·AB
=(BD+CD)BD·AC
即CD2AB+BD·CD·AB
=BD2AC+BD·CD·AC
即-BD·DC·AC+BD·DC·AB
=-CD2AB+BD2AC
即AB·AC2-AB2·AC-
BD·DC·AC+BD·DC·AB
=AB·AC2-AB2AC
-CD2AB+BD2AC
即AB·AC2-AB2AC
-CD2AB+BD2AC
=(AB·AC-BD·DC)(AC-AB)
即AB·AC-BD·DC
=(AB·AC2-CD2AB+BD2AC-AB2AC)
/(AC-AB)①
AD為角分線(xiàn)
有(AB2+AD2-BD2)/(2AB·AD)
=(AC2+AD2-CD2)/(2AC·AD)
即(AB2+AD2-BD2)/AB
=(AC2+AD2-CD2)/AC
即AB2AC+AD2AC-BD2AC
=AC2AB+AD2AB-CD2AB
即AD2
=(AC2AB-CD2AB+BD2AC-AB2AC)
/(AC-AB)②
由①②
AD2=AB·AC-BD·DC
得證
標(biāo)簽: