麻雀形狀隨筆13:牌山分布律(1)
作為隨筆性質(zhì)的文章,本文會(huì)寫的比較隨意或者晦澀,本文主要討論麻雀中的各種形狀的極盡深入,對(duì)麻雀技術(shù)提升沒有太大幫助。適用于任何麻雀。 作者:幾愿?
麻雀形狀隨筆13:牌山分布律(1)
?
【山牌】:136張牌整理完后擺在四家面前的牌,稱作牌山。牌山中的牌叫做山牌。山牌是游戲過程中要摸的牌。
【河牌】:擺在四家面前每一巡打出的牌,稱作牌河。牌河中的牌叫做河牌。河牌是游戲過程中打出的牌。
【起手山牌】:將東家摸14張牌視作先摸13張牌,再從牌山中摸1張。開局自己所摸的13張牌叫做起手山牌。
【后續(xù)山牌】:游戲過程中從自己牌山中再摸的牌叫做后續(xù)山牌。
【黑口袋思想】:山牌的取法就像每家都有一個(gè)小黑口袋,把屬于自己的牌裝進(jìn)袋子里取,四家的牌數(shù)量、種類其實(shí)是完全固定的,只從自己的山牌去取。但是因?yàn)榇硬煌该鳎l也不知道自己有什么牌,所以只能用概率計(jì)算。
【副露錯(cuò)位】:通過副露的吃、碰、杠等,摸牌順序和方向發(fā)生了變化,導(dǎo)致所摸的山牌也發(fā)生了變化,稱作【副露錯(cuò)位】。其實(shí)質(zhì)是【黑口袋】的交換。
先考慮【環(huán)保麻雀】的絕對(duì)的牌山分布律,【環(huán)保麻雀】即不考慮順子,只考慮對(duì)子、刻子、杠子的麻雀。
【均勻場】
在環(huán)保麻雀中,只有“字牌”,每個(gè)牌之間沒有聯(lián)系,只能與自己組成“刻子”、“雀頭”。
因?yàn)槊糠N牌只有4張,且牌局只有4個(gè)人,每個(gè)人山牌張數(shù)一樣。
因此每種牌都可以均勻分配1張每個(gè)人的山牌中。
自己山牌中每種牌都有但只有1張,可以把這種牌山分布律叫做【均勻場】。
所有山牌都符合【均勻場】,稱為【全部均勻場】,
只有某幾家山牌如此,則稱為【局部均勻場】。
想象【全部均勻場】中,四個(gè)人都是均勻場,都可以有國士無雙十三面的起手手牌,這就是均勻場(當(dāng)然每個(gè)人都胡不了牌,只要不打自己手牌就互相對(duì)死)

套用在【麻雀】中,顯然每個(gè)人也都可以摸123456789m123456789p123456789s1234567z。
此時(shí)大家都沒有雀頭,無法自摸和牌,因?yàn)椴淮嬖趯?duì)子,靠副露也不能得到雀頭,和牌即使是國士無雙也需要對(duì)子。
然而,在麻雀中其實(shí)不應(yīng)稱為均勻場,這是因?yàn)閿?shù)牌和順子的存在。均勻場在麻雀中其實(shí)屬于順子場的極端情況。
?
【100%對(duì)子場】、【100%刻子場】、【100%杠子場】
對(duì)子場,用粗糙的定義就是說自己的牌山很容易能摸到2張相同的牌摸成對(duì)子。
刻子場,同樣用粗糙的定義,就是說自己的牌山很容易能摸到3張相同的牌摸成刻子。
杠子場,同樣用粗糙的定義,就是說自己的牌山很容易能摸到4張相同的牌摸成杠子。
而100%對(duì)子場、刻子場、杠子場是指自己所有的山牌只有對(duì)子、刻子、杠子等。
?

因?yàn)椴桓甭兜那闆r下,自己的牌山總是固定的。因此能否摸成對(duì)子、刻子、杠子取決于自己山牌的種類和數(shù)目。
如果說均勻場相當(dāng)于縱向的排布山牌,那么對(duì)子場,包括后面的刻子場和杠子場就是橫向的排布山牌。
但是,每個(gè)人摸到的山牌數(shù)s不一定被2、3、4整除,不一定都能容納對(duì)子、刻子、杠子等。因此當(dāng)s不被2、3、4整除時(shí),沒有100%對(duì)子場、刻子場、杠子場。
當(dāng)s mod 12=0時(shí),那么既有100%對(duì)子場、也有100%刻子場和100%杠子場。
?
【對(duì)子場、刻子場、杠子場的包含關(guān)系】
設(shè)杠子為Q(4)、刻子為Q(3)、對(duì)子為Q(2),則
Q(4)中有Q(3)、Q(2);Q(3)中有Q(2),那么杠子場的部分就是刻子場或者對(duì)子場;刻子場的部分就是對(duì)子場。因?yàn)楦茏又挥?張牌,杠子不會(huì)拆成刻子+對(duì)子。
一般的【麻雀】中,s=34,沒有100%的杠子場也沒有100%的刻子場,總會(huì)有多余的牌填充。多余的牌不會(huì)作出貢獻(xiàn)。
則34有8個(gè)Q(4)余2張牌;有11個(gè)Q(3)余1張牌,有17個(gè)Q(2)。
不妨記作8Q(4)-2 、11Q(3)-1、17Q(2)。
8Q(4)-2當(dāng)然可以看作8Q(3)-10。
對(duì)杠子來說,1個(gè)杠子拆成2個(gè)相同對(duì)子。相同對(duì)子不能作用于一般形,因?yàn)橐话阈沃灰?個(gè)對(duì)子。對(duì)日本麻雀來說,七對(duì)不能有重復(fù)對(duì)子,因此也不能作用于七對(duì)形。但對(duì)國標(biāo)麻雀來說,七對(duì)可以有重復(fù)對(duì)子,可以作用于七對(duì)形。
8Q(4)-2可以看作8Q(2)-? 10、16Q(2)-2,甚至可以有9Q(2)-8和17Q(2)
11Q(3)-1當(dāng)然可以看作11Q(2)-12。
【對(duì)子場、刻子場、杠子場的組合關(guān)系】
根據(jù)每種牌的數(shù)量不同,可以將自己的山牌記作
s=mQ(4)+n Q(3)+pQ(2)+q
的形式,表示自己的山牌有m個(gè)杠子、n個(gè)刻子、p個(gè)對(duì)子和q個(gè)單牌。其滿足:4m+3n+2p+q=34。解此不定方程即可得到多種組合關(guān)系。
(m≤8,n≤11,p≤17,m≤34)
因此也可以說自己的山牌是一種混合場,包含了各種對(duì)子、刻子、杠子。
?
【趨勢(shì)】:指某一元素(對(duì)子、刻子、杠子、順子等)的數(shù)量。稱某一元素?cái)?shù)量多的場,趨勢(shì)增強(qiáng),某一元素?cái)?shù)量少的場,趨勢(shì)減弱。
由對(duì)子場、刻子場、杠子場的山牌構(gòu)成得知,
在【對(duì)子場趨勢(shì)增強(qiáng)】的時(shí)候,對(duì)系番種很容易做到,如:【七對(duì)子】。
在【刻子場趨勢(shì)增強(qiáng)】的時(shí)候,刻系番種很容易做到,如:【對(duì)對(duì)和】、【三暗刻】、【四暗刻】等。
在【杠子場趨勢(shì)增強(qiáng)】的時(shí)候,杠系番種很容易做到,如:【三杠子】、【四杠子】等。
?
由于希望【麻雀】和牌越快越好,而和牌以后,部分【后續(xù)山牌】都不需要。因此也有必要考察前X張山牌情況下的【場】的【趨勢(shì)】,如可稱【前24張山牌對(duì)子場趨勢(shì)】或【前11巡山牌對(duì)子場趨勢(shì)】。
?
通過以上得知,考察【牌山分布律】,本質(zhì)就是:在全知的情況下,抽出山牌或者前X張山牌,考察它們的形狀組成。
實(shí)際上,我們對(duì)山牌并非全知,因此【讀山】的實(shí)質(zhì)是:根據(jù)場上的信息以及自己的手牌(屬于山牌),推測(cè)牌山分布律,從而估計(jì)山牌種類、數(shù)目和第X巡摸到的分布概率,根據(jù)概率作出打牌決策。
未完待續(xù)...