【標(biāo)題速讀】【Natcatal】【2023年】【1-4月】

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。
1.Antibiotic at work. Albicidin is an antibiotic exhibiting features that are sought-after in the fight against multidrug-resistant bacteria. Here, Jonathan G. Heddle, Roderich D. Süssmuth and Dmitry Ghilarov uncover the mechanism of action of this antibiotic inhibiting its target bacterial DNA gyrase, and present atomic-level details of the interaction via cryogenic electron microscopy studies.
工作中使用抗生素。Albicidin 是一種抗生素,在對(duì)抗多重耐藥細(xì)菌方面具有廣受歡迎的特性。在這里,Jonathan G. Heddle、Roderich D. Süssmuth 和 Dmitry Ghilarov 揭示了這種抗生素抑制其靶細(xì)菌 DNA 旋轉(zhuǎn)酶的作用機(jī)制,并通過低溫電子顯微鏡研究呈現(xiàn)了相互作用的原子級(jí)細(xì)節(jié)。

2.Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2.
離域態(tài)誘導(dǎo)的選擇性鍵斷裂,用于從 CO2 中高效電合成甲醇。

3.Boron-catalysed hydrogenolysis of unactivated C(aryl)–C(alkyl) bonds.
未活化的 C(芳基)-C(烷基)鍵的硼催化氫解。

4.Catalytic mechanism for Renilla-type luciferases.
海腎型熒光素酶的催化機(jī)制。

5.Mechanistic and structural characterization of an iridium-containing cytochrome reveals kinetically relevant cofactor dynamics.
含銥細(xì)胞色素的機(jī)理和結(jié)構(gòu)表征揭示了動(dòng)力學(xué)相關(guān)的輔因子動(dòng)力學(xué)。

6.Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin.
肽抗生素albicidin拓?fù)洚悩?gòu)酶中毒的分子機(jī)制。

7.Promotion of adsorptive and catalytic properties of zeolitic Br?nsted acid sites by proximal extra-framework Si(OH)x groups.
通過近端骨架外 Si(OH)x 基團(tuán)促進(jìn)沸石布朗斯臺(tái)德酸位點(diǎn)的吸附和催化性能。

8.Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocatalyst modified with Al2O3.
阻止 Al2O3 修飾的 Rh/GaN-ZnO 光催化劑上整體水分解的逆反應(yīng)。

9.Thioester-mediated biocatalytic amide bond synthesis with in situ thiol recycling.
硫酯介導(dǎo)的生物催化酰胺鍵合成與原位硫醇回收。

====================================
1.Machine bridges. Artificial intelligence and machine learning are becoming increasingly important in many aspects of twenty-first century life. This Focus issue provides an overview of how machine learning can be applied to facilitate rapid advances in catalyst discovery. The cover image comes from a Review by Hongliang Xin and colleagues, which discusses strategies to utilize machine learning to bridge the complexity gap that currently exists between real and computed catalytic systems.
機(jī)橋。人工智能和機(jī)器學(xué)習(xí)在二十一世紀(jì)生活的許多方面變得越來越重要。本期焦點(diǎn)概述了如何應(yīng)用機(jī)器學(xué)習(xí)來促進(jìn)催化劑發(fā)現(xiàn)的快速進(jìn)展。封面圖片來自 Hongliang Xin 及其同事的評(píng)論,其中討論了利用機(jī)器學(xué)習(xí)來彌合當(dāng)前真實(shí)催化系統(tǒng)與計(jì)算催化系統(tǒng)之間存在的復(fù)雜性差距的策略。

2.Exploring catalytic reaction networks with machine learning.
通過機(jī)器學(xué)習(xí)探索催化反應(yīng)網(wǎng)絡(luò)。

3.Bridging the complexity gap in computational heterogeneous catalysis with machine learning.
通過機(jī)器學(xué)習(xí)彌合計(jì)算異構(gòu)催化的復(fù)雜性差距。

4.Machine learning-enabled retrobiosynthesis of molecules.
機(jī)器學(xué)習(xí)支持分子的逆生物合成。

5.Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases.
使用工程卡賓轉(zhuǎn)移酶進(jìn)行化學(xué)趨異 C(sp3)–H 和 C(sp2)–H 氰甲基化。

6.Ultrasmall amorphous zirconia nanoparticles catalyse polyolefin hydrogenolysis.
超小的無定形氧化鋯納米顆粒催化聚烯烴氫解。

7.Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis.
優(yōu)化 p 區(qū)金屬硫化物中 S 的 p 電荷用于硫還原電催化。

8.Operando magnetic resonance imaging of product distributions within the pores of catalyst pellets during Fischer–Tropsch synthesis.
費(fèi)托合成過程中催化劑顆??變?nèi)產(chǎn)物分布的操作磁共振成像。

9.Anti-Markovnikov hydrochlorination and hydronitrooxylation of α-olefins via visible-light photocatalysis.
通過可見光光催化進(jìn)行 α-烯烴的反馬爾可夫尼科夫氫氯化和氫硝基酰化。

10.Catalytic reforming of methane with H2S via dynamically stabilized sulfur on transition metal oxides and sulfides.
通過動(dòng)態(tài)穩(wěn)定的過渡金屬氧化物和硫化物上的硫,用 H2S 催化重整甲烷。

====================================
1.Oxidoreductase at the tip. Formate dehydrogenase is immobilized on a scanning tunnelling microscope tip to measure the kinetic turnover of its enzymatic reaction showing that the bound NADH directly converts to NAD+ via in situ hydride exchange.
尖端有氧化還原酶。將甲酸脫氫酶固定在掃描隧道顯微鏡尖端上,測(cè)量其酶促反應(yīng)的動(dòng)力學(xué)轉(zhuǎn)換,顯示結(jié)合的 NADH 通過原位氫化物交換直接轉(zhuǎn)化為 NAD+。

2.Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%.
有機(jī)底物的電催化雙氫化,法拉第效率接近 200%。

3.Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis.
用于過氧化氫電合成的負(fù)載型金屬酞菁催化劑的超分子調(diào)節(jié)。

4.Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions.
闡明用于還原偶聯(lián)反應(yīng)的聚吡啶鎳配合物中的電子轉(zhuǎn)移事件。

5.Elemental zoning enhances mass transport in zeolite catalysts for methanol to hydrocarbons.
元素分區(qū)增強(qiáng)了沸石催化劑中甲醇到碳?xì)浠衔锏膫髻|(zhì)。

6.Catalytic cycle of formate dehydrogenase captured by single-molecule conductance.
單分子電導(dǎo)捕獲的甲酸脫氫酶的催化循環(huán)。

7.Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3.
菱沸石中骨架鋁密度對(duì)氨選擇性催化還原 NOx 過程中銅離子遷移率和反應(yīng)活性的影響。

====================================
1.Super CO2. In their work, Damien Voiry and colleagues employ a CO2 supersaturation strategy to promote electrodeposition of a highly alloyed Cu–Ag catalyst and its subsequent selectivity towards 2-propanol in the electrocatalytic reduction of CO2.
超級(jí)二氧化碳。Damien Voiry 及其同事在他們的工作中采用了 CO2 過飽和策略來促進(jìn)高合金 Cu-Ag 催化劑的電沉積及其隨后在 CO2 電催化還原中對(duì) 2-丙醇的選擇性。

2.Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing.
冷凍電鏡揭示了四膜蟲 I 組內(nèi)含子自剪接的動(dòng)態(tài)。

3.Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions.
在環(huán)境條件下使用級(jí)聯(lián)電解和熱催化從一氧化碳選擇性合成丁烷。

4.Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation.
通過電解質(zhì)過飽和將二氧化碳直接電解為 C3 產(chǎn)品。

5.Stereoselective conjugate cyanation of enals by combining photoredox and organocatalysis.
通過結(jié)合光氧化還原和有機(jī)催化對(duì)烯醇進(jìn)行立體選擇性共軛氰化。

6.Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis.
反應(yīng)環(huán)境影響電荷轉(zhuǎn)移,但不影響析氫催化中的化學(xué)反應(yīng)步驟。

7.Metal surfaces catalyse polarization-dependent hydride transfer from H2.
金屬表面催化來自 H2 的偏振相關(guān)氫化物轉(zhuǎn)移。

8.Origin of active sites on silica–magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process.
一步乙醇制丁二烯過程中二氧化硅-氧化鎂催化劑活性位點(diǎn)的起源和反應(yīng)環(huán)境的控制。
