最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

線性系統(tǒng)的分離原理——降維觀測(cè)器情形下的證明

2023-06-07 22:35 作者:斟好雨  | 我要投稿

在現(xiàn)代控制理論中講解分離原理時(shí)一般都以全維觀測(cè)器為例進(jìn)行證明(劉豹《現(xiàn)代控制理論》p221-p222),事實(shí)上,這個(gè)定理對(duì)于降維觀測(cè)器也同樣成立,證明思路類似,但步驟較為繁瑣。下面給出證明。


????考慮如下形式的線性系統(tǒng)

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cdot%7Bx%7D_1%5C%5C%0A%09%5Cdot%7Bx%7D_2%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09A_%7B11%7D%26%09%09A_%7B12%7D%5C%5C%0A%09A_%7B21%7D%26%09%09A_%7B22%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09x_1%5C%5C%0A%09x_2%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%2B%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09B_1%5C%5C%0A%09B_2%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20u%5C%5C%0A%09y%3D%5Cleft%5B%20I%5C%20%5C%200%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09x_1%5C%5C%0A%09x_2%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%3Dx_1%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5Ctag%7B1%7D

????這類系統(tǒng)無(wú)需進(jìn)行狀態(tài)變換就可進(jìn)行狀態(tài)觀測(cè)器設(shè)計(jì),需要觀測(cè)的狀態(tài)向量為x_2,則設(shè)計(jì)的狀態(tài)觀測(cè)器為

%5Cdot%7B%5Chat%7Bx%7D%7D_2%3D%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%20%5Cright)%20%5Chat%7Bx%7D_2%2BL%5Cleft(%20%5Cdot%7By%7D-A_%7B11%7Dy-B_1u%20%5Cright)%20%2BA_%7B21%7Dy%2BB_2u%5Ctag%7B2%7D

????引入x_1的觀測(cè)值%5Chat%7Bx%7D_1,且有%5Chat%7Bx%7D_1%3Dx_1%3Dy,并將%5Chat%7Bx%7D_1%5Chat%7Bx%7D_2合起來(lái)作為%5Chat%7Bx_2%7D

????構(gòu)造狀態(tài)反饋控制律為

u%3DK%5Chat%7Bx%7D%2Bv%3D%5Cleft%5B%20k_1%5C%20k_2%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09%5Chat%7Bx%7D_1%5C%5C%20%09%5Chat%7Bx%7D_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%2Bv%3Dk_1%5Chat%7Bx%7D_1%2Bk_2%5Chat%7Bx%7D_2%2Bv%5Ctag%7B3%7D

????由狀態(tài)反饋控制律的形式,可將狀態(tài)方程改寫為

%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09%5Cdot%7Bx%7D_1%5C%5C%20%09%5Cdot%7Bx%7D_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A_%7B11%7D%26%09%09A_%7B12%7D%5C%5C%20%09A_%7B21%7D%26%09%09A_%7B22%7D%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09x_1%5C%5C%20%09x_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%2B%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09B_1%5C%5C%20%09B_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Cleft%5B%20k_1%5C%20k_2%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09%5Chat%7Bx%7D_1%5C%5C%20%09%5Chat%7Bx%7D_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%2B%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09B_1%5C%5C%20%09B_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20v%20%5C%5C%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A_%7B11%7D%26%09%09A_%7B12%7D%5C%5C%20%09A_%7B21%7D%26%09%09A_%7B22%7D%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09x_1%5C%5C%20%09x_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%2B%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09B_1k_1%26%09%09B_1k_2%5C%5C%20%09B_2k_1%26%09%09B_2k_2%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09%5Chat%7Bx%7D_1%5C%5C%20%09%5Chat%7Bx%7D_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%2B%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09B_1%5C%5C%20%09B_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20v%5Ctag%7B4%7D

????注意到

%5Cdot%7By%7D%3D%5Cdot%7Bx%7D_1%3DA_%7B11%7Dx_1%2BA_%7B12%7Dx_2%2BB_1k_1%5Chat%7Bx%7D_1%2BB_1k_2%5Chat%7Bx%7D_2%2BB_1v%5Ctag%7B5%7D

????則由式(3)(5)以及 y%3Dx_1,可將將(2)式改寫為

%5Cdot%7B%5Chat%7Bx%7D%7D_2%3D%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%20%5Cright)%20%5Chat%7Bx%7D_2%2BL%5Cleft(%20%5Cdot%7By%7D-A_%7B11%7Dy-B_1u%20%5Cright)%20%2BA_%7B21%7Dy%2BB_2u%20%5C%5C%20%3D%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%20%5Cright)%20%5Chat%7Bx%7D_2%2BLA_%7B11%7Dx_1%2BLA_%7B12%7Dx_2%2BLB_1k_1%5Chat%7Bx%7D_1%2BLB_1k_2%5Chat%7Bx%7D_2%2BLB_1v%20%0A%5C%5C-LA_%7B11%7Dx_1%2BA_%7B21%7Dx_1-LB_1%5Cleft(%20k_1%5Chat%7Bx%7D_1%2Bk_2%5Chat%7Bx%7D_2%2Bv%20%5Cright)%20%2BB_2%5Cleft(%20k_1%5Chat%7Bx%7D_1%2Bk_2%5Chat%7Bx%7D_2%2Bv%20%5Cright)%20%20%5C%5C%20%3DA_%7B21%7Dx_1%2BLA_%7B12%7Dx_2%2BB_2k_1%5Chat%7Bx%7D_1%2B%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%2BB_2k_2%20%5Cright)%20%5Chat%7Bx%7D_2%2BB_2v%20%5Ctag%7B6%7D

????則構(gòu)成2n維閉環(huán)系統(tǒng)%5CSigma%20_%7BLK%7D

%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09%5Cdot%7Bx%7D_1%5C%5C%20%09%5Cdot%7Bx%7D_2%5C%5C%20%09%5Cdot%7B%5Chat%7Bx%7D%7D_1%5C%5C%20%09%5Cdot%7B%5Chat%7Bx%7D%7D_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A_%7B11%7D%26%09%09A_%7B12%7D%26%09%09B_1k_1%26%09%09B_1k_2%5C%5C%20%09A_%7B21%7D%26%09%09A_%7B22%7D%26%09%09B_2k_1%26%09%09B_2k_2%5C%5C%20%09A_%7B11%7D%26%09%09A_%7B12%7D%26%09%09B_1k_1%26%09%09B_1k_2%5C%5C%20%09A_%7B21%7D%26%09%09LA_%7B12%7D%26%09%09B_2k_1%26%09%09%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%2BB_2k_2%20%5Cright)%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09x_1%5C%5C%20%09x_2%5C%5C%20%09%5Chat%7Bx%7D_1%5C%5C%20%09%5Chat%7Bx%7D_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20%2B%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20%09B_1%5C%5C%20%09B_2%5C%5C%20%09B_1%5C%5C%20%09B_2%5C%5C%20%5Cend%7Barray%7D%20%5Cright%5D%20v%20%5Ctag%7B7%7D????構(gòu)造變換矩陣為

T%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09I%26%09%09O%5C%5C%20%09I%26%09%09-I%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Ctag%7B8%7D

????則狀態(tài)變換后的系統(tǒng)矩陣為

%5Cbar%7BA%7D_c%3DT%5E%7B-1%7DA_cT%20%5C%5C%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09I_n%26%09%09O%5C%5C%20%09I_n%26%09%09-I_n%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A_%7B11%7D%26%09%09A_%7B12%7D%26%09%09B_1k_1%26%09%09B_1k_2%5C%5C%20%09A_%7B21%7D%26%09%09A_%7B22%7D%26%09%09B_2k_1%26%09%09B_2k_2%5C%5C%20%09A_%7B11%7D%26%09%09A_%7B12%7D%26%09%09B_1k_1%26%09%09B_1k_2%5C%5C%20%09A_%7B21%7D%26%09%09LA_%7B12%7D%26%09%09B_2k_1%26%09%09%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%2BB_2k_2%20%5Cright)%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09I_n%26%09%09O%5C%5C%20%09I_n%26%09%09-I_n%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A_%7B11%7D%26%09%09A_%7B12%7D%26%09%09B_1k_1%26%09%09B_1k_2%5C%5C%20%09A_%7B21%7D%26%09%09A_%7B22%7D%26%09%09B_2k_1%26%09%09B_2k_2%5C%5C%20%090%26%09%090%26%09%090%26%09%090%5C%5C%20%090%26%09%09A_%7B22%7D-LA_%7B12%7D%26%09%090%26%09%09-%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%20%5Cright)%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09I_n%26%09%09O%5C%5C%20%09I_n%26%09%09-I_n%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A_%7B11%7D%2BB_1k_1%26%09%09A_%7B12%7D%2BB_1k_2%26%09%09-B_1k_1%26%09%09-B_1k_2%5C%5C%20%09A_%7B21%7D%2BB_2k_1%26%09%09A_%7B22%7D%2BB_2k_2%26%09%09-B_2k_1%26%09%09-B_2k_2%5C%5C%20%090%26%09%090%26%09%090%26%09%090%5C%5C%20%090%26%09%090%26%09%090%26%09%09A_%7B22%7D-LA_%7B12%7D%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%20%09A%2BBK%26%09%09-BK%5C%5C%20%09O%26%09%09%5Cbegin%7Bmatrix%7D%20%090%26%09%090%5C%5C%20%090%26%09%09A_%7B22%7D-LA_%7B12%7D%5C%5C%20%5Cend%7Bmatrix%7D%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%5D%20%20%5Ctag%7B9%7D

????則%5CSigma%20_%7BLK%7D的特征多項(xiàng)式為

%5Cdet%20%5Cleft(%20%5Clambda%20I-A_c%20%5Cright)%20%3D%5Cdet%20%5Cleft(%20%5Clambda%20I-%5Cbar%7BA%7D_c%20%5Cright)%20%20%5C%5C%20%3D%5Cdet%20%5Cleft(%20A%2BBK%20%5Cright)%20%5Ccdot%20%5Cdet%20%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%20%5Cright)%20%20%5Ctag%7B10%7D

????其中%5Cdet%20%5Cleft(%20A%2BBK%20%5Cright)%20為狀態(tài)反饋特征多項(xiàng)式,%5Cdet%20%5Cleft(%20A_%7B22%7D-LA_%7B12%7D%20%5Cright)%20為降維觀測(cè)器特征多項(xiàng)式。由此可知二者相互獨(dú)立,分離原理成立。

線性系統(tǒng)的分離原理——降維觀測(cè)器情形下的證明的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
奉贤区| 威远县| 三明市| 邻水| 报价| 怀远县| 东乡| 霍城县| 湖口县| 祥云县| 法库县| 开平市| 姜堰市| 原阳县| 镇沅| 侯马市| 札达县| 长海县| 七台河市| 岫岩| 达尔| 桂东县| 淮滨县| 彰化县| 定陶县| 宁明县| 梁河县| 桓仁| 平邑县| 朝阳区| 桂阳县| 棋牌| 大余县| 温州市| 山东省| 慈利县| 延安市| 钟祥市| 襄垣县| 胶州市| 克什克腾旗|