最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

利用同構(gòu)思想求切點弦方程(2021全國乙圓錐曲線)

2022-08-06 19:16 作者:數(shù)學(xué)老頑童  | 我要投稿

(2021全國乙,21)已知拋物線Cx%5E2%3D2pyp%3E0)的焦點為F,且F與圓Mx%5E2%2B%5Cleft(%20y%2B4%20%5Cright)%20%5E2%3D1上點的距離的最小值為4.

(1)求p;

(2)若點PM上,PA、PBC的兩條切線,A、B是切點,求%5Cbigtriangleup%20PAB面積的最大值.

解:(1)易知%5Cleft%7C%20FM%20%5Cright%7C-1%3D4,

%5Cfrac%7Bp%7D%7B2%7D%2B4-1%3D4,

解得p%3D2.

(2)由(1)知C的方程為x%5E2%3D4y,

y%3D%5Cfrac%7B1%7D%7B4%7Dx%5E2,(畫個圖)

求導(dǎo)得y'%3D%5Cfrac%7B1%7D%7B2%7Dx,

設(shè)A%5Cleft(%20x_1%2Cy_1%20%5Cright)%20、B%5Cleft(%20x_2%2Cy_2%20%5Cright)%20、P%5Cleft(%20m%2Cn%20%5Cright)%20

A處的切線斜率為%5Cfrac%7B1%7D%7B2%7Dx_1

所以A處的切線方程為

y-y_1%3D%5Cfrac%7B1%7D%7B2%7Dx_1%5Cleft(%20x-x_1%20%5Cright)%20.

因為該切線過點P,

所以n-y_1%3D%5Cfrac%7B1%7D%7B2%7Dx_1%5Cleft(%20m-x_1%20%5Cright)%20,

n-y_1%3D%5Cfrac%7B1%7D%7B2%7Dmx_1-%5Cfrac%7B1%7D%7B2%7Dx_%7B1%7D%5E%7B2%7D

n-y_1%3D%5Cfrac%7B1%7D%7B2%7Dmx_1-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%204y_1,

%5Ccolor%7Bred%7D%7By_1%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx_1%7D-n.


同理可得%5Ccolor%7Bred%7D%7By_2%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx_2%7D-n

可知A、B都在直線%5Ccolor%7Bred%7D%7By%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx%7D-n上,

所以直線AB的方程即為%5Ccolor%7Bred%7D%7By%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx%7D-n.

在該方程中,令x%3Dm,

可得y%3D%5Cfrac%7B1%7D%7B2%7Dm%5E2-n,

所以%5Cbigtriangleup%20PAB鉛垂高

%5Cleft%7C%20PN%20%5Cright%7C%3D%5Cfrac%7B1%7D%7B2%7Dm%5E2-n-n%3D%5Cfrac%7B1%7D%7B2%7Dm%5E2-2n.

聯(lián)立直線AB與拋物線C,得

x%5E2-2mx-4n%3D0

所以x_1%2Bx_2%3D2m,x_1x_2%3D4n

所以所以%5Cbigtriangleup%20PAB水平寬

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20x_1-x_2%20%5Cright%7C%26%3D%5Csqrt%7B%5Cleft(%20x_1%2Bx_2%20%5Cright)%20%5E2-4x_1x_2%7D%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%202m%20%5Cright)%20%5E2-4%5Ccdot%204n%7D%5C%5C%0A%09%26%3D2%5Csqrt%7Bm%5E2-4n%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Cbigtriangleup%20PAB%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft(%20%5Cfrac%7B1%7D%7B2%7Dm%5E2-2n%20%5Cright)%20%5Ccdot%202%5Csqrt%7Bm%5E2-4n%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cleft(%20m%5E2-4n%20%5Cright)%20%5E3%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cleft%5B%201-%5Cleft(%20n%2B4%20%5Cright)%20%5E2-4n%20%5Cright%5D%20%5E3%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B-%5Cleft(%20n%5E2%2B12n%2B15%20%5Cright)%20%5E3%7D%5C%5C%0A%5Cend%7Baligned%7D

S_%7B%5Cbigtriangleup%20PAB%7D%3Df%5Cleft(%20n%20%5Cright)%20%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B-%5Cleft(%20n%5E2%2B12n%2B15%20%5Cright)%20%5E3%7D,

其中n%5Cin%20%5Cleft%5B%20-5%2C-3%20%5Cright%5D%20

易知f%5Cleft(%20n%20%5Cright)%20%5Csearrow%20,所以

%5Cleft(%20S_%7B%5Cbigtriangleup%20PAB%7D%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%20n%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%20-5%20%5Cright)%20%3D20%5Csqrt%7B5%7D.


利用同構(gòu)思想求切點弦方程(2021全國乙圓錐曲線)的評論 (共 條)

分享到微博請遵守國家法律
鄂州市| 镇远县| 锡林郭勒盟| 车险| 新乡县| 榕江县| 甘德县| 民和| 万载县| 定安县| 星子县| 平湖市| 重庆市| 麻江县| 南部县| 肥乡县| 驻马店市| 黄石市| 通江县| 河北省| 关岭| 北海市| 香河县| 库车县| 拜泉县| 隆林| 桃园县| 西乌珠穆沁旗| 楚雄市| 岳池县| 新晃| 股票| 邵武市| 白山市| 郯城县| 枣阳市| 汝阳县| 湟中县| 顺平县| 沙坪坝区| 舞阳县|