最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

利用牛頓恒等式解決對(duì)稱和問(wèn)題

2023-08-22 19:47 作者:現(xiàn)代微積分  | 我要投稿

之前在評(píng)論區(qū)立過(guò)flag要寫篇文章講解,今兒就來(lái)兌現(xiàn)承諾~

開頭不想賣關(guān)子了,直奔主題吧~

設(shè)一個(gè)多項(xiàng)式方程x%5E%7Bn%7D%2B%5Ctext%7B~%7Dx%5E%7Bn-1%7D%2B%5Ctext%7B~%7Dx%5E%7Bn-2%7D%2B...%2B%5Ctext%7B~%7Dx%5E%7B%7D%2B%5Ctext%7B~%7D%3D0(n%5Cin%5Cmathbb%7BZ%7D%5E%7B%2B%7D)(~為常系數(shù))的根為x_1%2Cx_2%2Cx_3%2C...%2Cx_n,那么根據(jù)因式定理,該多項(xiàng)式可以分解為(x-x_1)(x-x_2)%5Ccdots%20(x-x_n)%3D0

如果我們將下面的式子進(jìn)行展開,再與前面的常系數(shù)進(jìn)行對(duì)比,就可以得到根與系數(shù)之間的關(guān)系。

然而,直接暴力展開來(lái)觀察未免過(guò)于“呆”了,那么有什么巧妙的方法更方便歸納么?答案是利用組合的思想

多項(xiàng)式相乘,根據(jù)分步乘法原理,其完全展開的每一項(xiàng)均可以視為經(jīng)n次挑選后相乘的結(jié)合:

ps:對(duì)于完全展開式中的其中一項(xiàng),要經(jīng)歷這n次選擇后(這件事)才完成,因此采用分步乘法原理

第1個(gè)括號(hào)有選x和選-x?兩種選擇;第2個(gè)括號(hào)有選x和選-x?兩種選擇;第3個(gè)括號(hào)有選x和選-x?兩種選擇;以此類推

經(jīng)過(guò)這n步后,于是就有2%5En種選擇方案,也即完全展開后一個(gè)有2%5En項(xiàng)

我們要對(duì)這2%5En項(xiàng)按x的次數(shù)由高到低進(jìn)行歸納:


x%5En項(xiàng)的系數(shù):

x%5En代表有n個(gè)x相乘,僅當(dāng)每個(gè)括號(hào)都選x時(shí)相乘才能得到,因此只有1種方案,即:x%5Ccdot%20x%5Ccdots%20x%3Dx%5En,因此x%5En項(xiàng)的系數(shù)為1;

x%5E%7Bn-1%7D項(xiàng)的系數(shù):

x%5En代表有n-1個(gè)x相乘,由此說(shuō)明n個(gè)括號(hào)中有n-1個(gè)括號(hào)選x,1個(gè)括號(hào)不選x

那么我們就要對(duì)這1個(gè)不選x括號(hào)進(jìn)行討論:

若第1個(gè)括號(hào)不選x,則該項(xiàng)為:

(-x_1)%5Ccdot%20x%5Ccdot%20x%5Ccdots%20x%3D-x_1x%5E%7Bn-1%7D

若第2個(gè)括號(hào)不選x,則該項(xiàng)為:

x%5Ccdot%20(-x_2)%5Ccdot%20x%5Ccdots%20x%3D-x_2x%5E%7Bn-1%7D

若第3個(gè)括號(hào)不選x,則該項(xiàng)為:

x%5Ccdot%20x%5Ccdot%20(-x_3)%5Ccdots%20x%3D-x_3x%5E%7Bn-1%7D


以此類推,那么根據(jù)分類加法原理,進(jìn)行合并同類項(xiàng)得:

(-x_1-x_2-%5Ccdots%20-x_n)x%5E%7Bn-1%7D

ps:選出還x%5E%7Bn-1%7D項(xiàng)有n種方案(即完成這種事情有n種方案),因此采用分類加法原理

因此x%5E%7Bn-1%7D項(xiàng)的系數(shù)為-x_1-x_2-%5Ccdots%20-x_n

暫時(shí)還沒發(fā)現(xiàn)明顯的規(guī)律,不妨繼續(xù)探索~

x%5E%7Bn-2%7D項(xiàng)的系數(shù):

x%5E%7Bn-2%7D代表有n-2個(gè)x相乘,由此說(shuō)明n個(gè)括號(hào)中有n-2個(gè)括號(hào)選x,2個(gè)括號(hào)不選x

那么我們就要對(duì)這2個(gè)不選x括號(hào)進(jìn)行討論:

若第1個(gè)和第2個(gè)括號(hào)不選x,則該項(xiàng)為:

(-x_1)%5Ccdot%20(-x_2)%5Ccdot%20x%5Ccdot%20x%5Ccdots%20x%3Dx_1x_2x%5E%7Bn-2%7D

若第1個(gè)和第3個(gè)括號(hào)不選x,則該項(xiàng)為:

x%5Ccdot%20(-x_2)%5Ccdot%20(-x_3)%5Ccdot%20x%5Ccdots%20x%3Dx_2x_3x%5E%7Bn-2%7D

以此類推直到輪完x_1x_nx%5E%7Bn-2%7D

然后就輪到"不選第2個(gè)"放前面了,這里就要與"不選第3個(gè)"之后的每個(gè)進(jìn)行組合,因?yàn)?#34;不選第2個(gè)"與"不選第1個(gè)"組合前面已經(jīng)討論過(guò)了,因此就類似于小學(xué)時(shí)學(xué)的"打電話"問(wèn)題,當(dāng)然其實(shí)也是高中學(xué)的組合問(wèn)題:從n個(gè)"不選第~個(gè)"中選擇不選x的兩項(xiàng),選出這兩項(xiàng)沒有先后順序

然后輪完x_2x_nx%5E%7Bn-2%7D

再?gòu)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x_3x_4x%5E%7Bn-2%7D" alt="x_3x_4x%5E%7Bn-2%7D">輪到x_3x_nx%5E%7Bn-2%7D

以此類推又進(jìn)行了一次歸納,再根據(jù)分類加法原理進(jìn)行合并同類項(xiàng),于是得到

x%5E%7Bn-2%7D項(xiàng)的系數(shù)為

x_1x_2%2Bx_1x_3%2B...%2Bx_1x_n%2Bx_2x_3%2Bx_2x_4%2B...%2Bx_2x_n%2B...%2Bx_%7Bn-1%7Dx_n%3D0

到此式子就有些復(fù)雜了,因此我們需要察覺下其規(guī)律:

其相當(dāng)于從x_1x_n中任選2個(gè)相乘,再把這C_%7Bn%7D%5E%7B2%7D%20種結(jié)果進(jìn)行相加,我們給其取名曰:初等對(duì)稱多項(xiàng)式e_k,這便是牛頓恒等式中的內(nèi)容之一

我們記e_1%3Dx_1%2Bx_2%2B...%2Bx_n

e_2%3Dx_1x_2%2Bx_1x_3%2B...%2Bx_%7Bn-1%7Dx_n

e_3%3Dx_1x_2x_3%2Bx_1x_2x_4%2B...%2Bx_%7Bn-2%7Dx_%7Bn-1%7Dx_n

以此類推,也即e_k表示從這n個(gè)根中任選k個(gè)根進(jìn)行相乘,再把這C_%7Bn%7D%5E%7Bk%7D%20種結(jié)果進(jìn)行相加

定義了初等對(duì)稱多項(xiàng)式,我們便可以對(duì)原方程的系數(shù)進(jìn)行高度概括了,即:

x%5E%7Bn%7D-e_1x%5E%7Bn-1%7D%2Be_2x%5E%7Bn-2%7D-e_3x%5E%7Bn-3%7D%2B...%2B%5Ctext%7B~%7Dx%5E%7B%7D%2B%5Ctext%7B~%7D%3D0(n%5Cin%5Cmathbb%7BZ%7D%5E%7B%2B%7D)

也就是從第二項(xiàng)起由e?往右依次到e_n,且前面的正負(fù)號(hào)交替

這里有兩點(diǎn)需要解釋:1是x的次數(shù)是n-,那么就有個(gè)括號(hào)不選x,那么系數(shù)自然就是對(duì)這個(gè)根的輪換和,因此初等對(duì)稱式的下標(biāo)就是;

然后就是正負(fù)號(hào)問(wèn)題:由于我們先前定義的是對(duì)x_1%2Cx_2%2C...%2Cx_n的輪換和,然而原方程中由于是將-x_1%2C-x_2%2C...%2C-x_n視為整體,因此原式中是對(duì)-x_1%2C-x_2%2C...%2C-x_n的輪換和,那么如何轉(zhuǎn)化把前面的符號(hào)去掉呢?就是奇偶討論了:

當(dāng)不選x的個(gè)數(shù)為奇數(shù)時(shí),-1的奇數(shù)次方=-1,因此前面最終帶負(fù)號(hào),因此原式中e_1%2Ce_3%2Ce_5%2C...這些前面會(huì)多帶個(gè)負(fù)號(hào);

當(dāng)不選x的個(gè)數(shù)為偶數(shù)時(shí),-1的偶數(shù)次方=1,因此前面最終帶正號(hào),正號(hào)可省略,因此原式中e_2%2Ce_4%2Ce_6%2C...這些前面是正號(hào);


于是,我們便對(duì)多項(xiàng)式方程根與系數(shù)進(jìn)行了優(yōu)雅而高度的概括!

讓我們?cè)傩蕾p一番這和諧完美的形式:

%5Cbbox%5B%23CFF%2C5px%5D%7B%20%7B%5Clarge%20x%5E%7Bn%7D-e_1x%5E%7Bn-1%7D%2Be_2x%5E%7Bn-2%7D-e_3x%5E%7Bn-3%7D%2B...%2B%5Ctext%7B~%7Dx%5E%7B%7D%2B%5Ctext%7B~%7D%3D0%7D%20%7D

特殊的情況,如果取n=2就會(huì)得到一元二次方程x2-e?x+e?=0,那么這系數(shù)就是:-e?=-(x?+x?),e?=x?x?

這也就是我們熟知的韋達(dá)定理!原來(lái),證明兩根之和/兩根之積,用求根公式暴推是“”粗魯?shù)摹啊?/span>,其背后竟有如此優(yōu)雅美妙的組合證明!

我們?cè)賮?lái)看,如果把根代進(jìn)方程會(huì)如何?

由于x_1%2Cx_2%2C...%2Cx_n是原方程的n個(gè)根,那么分別將其代入方程組,就有:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ax_1%5E%7Bn%7D-e_1x_1%5E%7Bn-1%7D%2Be_2x_1%5E%7Bn-2%7D-e_3x_1%5E%7Bn-3%7D%2B...%2B%5Ctext%7B~%7Dx_1%5E%7B%7D%2B%5Ctext%7B~%7D%3D0%20%5C%5C%0Ax_2%5E%7Bn%7D-e_1x_2%5E%7Bn-1%7D%2Be_2x_2%5E%7Bn-2%7D-e_3x_2%5E%7Bn-3%7D%2B...%2B%5Ctext%7B~%7Dx_2%5E%7B%7D%2B%5Ctext%7B~%7D%3D0%20%5C%5C%0A%5Ccdots%20%20%5C%5C%0Ax_n%5E%7Bn%7D-e_1x_n%5E%7Bn-1%7D%2Be_2x_n%5E%7Bn-2%7D-e_3x%5E%7Bn-3%7D%2B...%2B%5Ctext%7B~%7Dx_n%5E%7B%7D%2B%5Ctext%7B~%7D%3D0%0A%5Cend%7Bmatrix%7D%5Cright.

相加,即有:

%5Cbegin%7Balign%7D%0A%26x_1%5E%7Bn%7D%2Bx_2%5En%2B...%2Bx_n%5En%5C%5C%0A-e_1%26(x_1%5E%7Bn-1%7D%2Bx_2%5E%7Bn-1%7D%2B...%2Bx_n%5E%7Bn-1%7D)%5C%5C%0A%2Be_2%26(x_1%5E%7Bn-2%7D%2Bx_2%5E%7Bn-2%7D%2B...%2Bx_n%5E%7Bn-2%7D)%5C%5C%0A-%26...%5C%5C%0A%26%3D0%0A%5Cend%7Balign%7D

為此,我們?cè)俣x冪和對(duì)稱多項(xiàng)式P_k,這便是牛頓恒等式中的內(nèi)容之二

我們記P_1%3Dx_1%2Bx_2%2B...%2Bx_n

P_2%3Dx_1%5E2%2Bx_2%5E2%2B...%2Bx_n%5E2

...

P_n%3Dx_2%5En%2Bx_2%5En%2B...%2Bx_n%5En

以此類推,也即P_k表示所有根的k次方和

于是上式簡(jiǎn)化為:

%5Cbbox%5B%23CFF%2C5px%5D%7B%20%7B%5Clarge%20P_n-e_1P_%7Bn-1%7D%2Be_2P_%7Bn-2%7D-e_3P_%7Bn-3%7D%2B...%2B%5Ctext%7B~%7DP_1%2B%5Ctext%7B~%7D%3D0%7D%20%7D

這也就得到了牛頓恒等式(初級(jí)版)

而上式可以再進(jìn)一步拓展,我們把前文中的每一個(gè)式子都乘以其對(duì)應(yīng)根的λ次方,即第1個(gè)式子兩邊同乘x_1%5E%5Clambda;第2個(gè)式子兩邊同乘x_2%5E%5Clambda;以此類推得:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ax_1%5E%7Bn%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%20%7D-e_1x_1%5E%7Bn-1%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2Be_2x_1%5E%7Bn-2%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D-e_3x_1%5E%7Bn-3%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2B...%2B%5Ctext%7B~%7Dx_1%5E%7B1%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2B%5Ctext%7B~%7Dx_1%5E%7B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%3D0%20%5C%5C%0Ax_2%5E%7Bn%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D-e_1x_2%5E%7Bn-1%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2Be_2x_2%5E%7Bn-2%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D-e_3x_2%5E%7Bn-3%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2B...%2B%5Ctext%7B~%7Dx_2%5E%7B1%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2B%5Ctext%7B~%7Dx_2%5E%7B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%3D0%20%5C%5C%0A%5Ccdots%20%20%5C%5C%0Ax_n%5E%7Bn%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D-e_1x_n%5E%7Bn-1%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2Be_2x_n%5E%7Bn-2%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D-e_3x_n%5E%7Bn-3%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2B...%2B%5Ctext%7B~%7Dx_n%5E%7B1%2B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%2B%5Ctext%7B~%7Dx_n%5E%7B%7B%5Ccolor%7BBlue%7D%20%7B%5Clambda%20%7D%7D%7D%3D0%0A%5Cend%7Bmatrix%7D%5Cright.

相加,即有:

%5Cbbox%5B%23CFF%2C5px%5D%7B%20%7B%5Clarge%20P_%7Bn%2B%5Clambda%7D-e_1P_%7Bn-1%2B%5Clambda%7D%2Be_2P_%7Bn-2%2B%5Clambda%7D-e_3P_%7Bn-3%2B%5Clambda%7D%2B...%2B%5Ctext%7B~%7DP_%7B1%2B%5Clambda%7D%2B%5Ctext%7B~%7DP_%7B%5Clambda%7D%3D0%7D%20%7D

這也就得到了牛頓恒等式(終極版)

也即滿足冪和對(duì)稱式下標(biāo)由左到右依次-1即可

這時(shí)就又跟遞推可以構(gòu)建關(guān)系了!??!

我們先來(lái)小試牛刀:

已知x?,x?,x?是方程x3-x2+1=0的根

x_1%5E7%2Bx_2%5E7%2Bx_3%5E7%3D%5Ctext%7B____%7D

依方程可寫出對(duì)應(yīng)的牛頓恒等式:

P(n+3)-P(n+2)+0P(n+1)+P(n)=0

即P(n+3)=P(n+2)-P(n)

這是個(gè)3階遞推,因此需要3個(gè)初始值

其中P(0)=x?o+x?o+x?o=3

P(1)=x?1+x?1+x?1=e?=1

這兩個(gè)是比較容易得知的,下面還要再求一個(gè)初值,比如P(2)

需要利用到恒等式

(a+b+c)2=a2+b2+c2+2(ab+ac+bc)

于是P(2)=x?2+x?2+x?2=e?2-2e?=1

然后就可以遞推了:

%5Cbegin%7Balign%7D%0A%26P(3)%3DP(2)-P(0)%3D-2%5C%5C%0A%26P(4)%3DP(3)-P(1)%3D-3%5C%5C%0A%26P(5)%3DP(4)-P(2)%3D-4%5C%5C%0A%26P(6)%3DP(5)-P(3)%3D-2%5C%5C%0A%26P(7)%3DP(6)-P(4)%3D1%0A%5Cend%7Balign%7D

x_1%5E7%2Bx_2%5E7%2Bx_3%5E7%3DP(7)%3D1


ps:求初值時(shí)若求P(-1),即:

P(-1)%3Dx_1%5E%7B-1%7D%2Bx_2%5E%7B-1%7D%2Bx_3%5E%7B-1%7D%3D%5Cfrac%7Bx_2x_3%2Bx_1x_3%2Bx_1x_2%7D%7Bx_1x_2x_3%7D%20%3D%5Cfrac%7Be_2%7D%7Be_3%7D%3D0%20

與已求的P(0),P(1)一起也可以完成遞推


例2:已知x%2By%2Bz%3D1%2Cx%5E2%2By%5E2%2Bz%5E2%3D1,求(x%5E3%2By%5E3%2Bz%5E3)_%7B%5Ctext%7Bmin%7D%7D

這題已經(jīng)寫過(guò)了,就直接截圖貼上來(lái)好了


ps:如果不知道三次函數(shù)判別式,那就分離參數(shù)轉(zhuǎn)化為水平線b=e?與三次函數(shù)f(a)=a3-a2交點(diǎn)來(lái)做,也能求出e?的取值范圍


拓展:如果遇到的不是對(duì)稱式,而是下面這種加權(quán)的這種又該怎么辦呢?

已知%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Aax%2Bby%3D3%20%5C%5C%0Aax%5E2%2Bby%5E2%3D7%20%5C%5C%0Aax%5E3%2Bby%5E3%3D16%20%5C%5C%0Aax%5E4%2Bby%5E4%3D42%0A%5Cend%7Bmatrix%7D%5Cright.,求ax%5E5%2Bby%5E5%3D%5Ctext%7B_____%7D

這個(gè)就不是牛頓恒等式了,不過(guò)仍可以轉(zhuǎn)化為遞推來(lái)求解

如果熟知二階線性遞推那就迎刃而解

二階線性遞推a_%7Bn%2B2%7D%2B%5Clambda%20a_%7Bn%2B1%7D%2B%5Cmu%20a_n%3D0(%5Clambda%2C%5Cmu為常數(shù))對(duì)應(yīng)的特征根方程為t%5E2%2B%5Clambda%20t%2B%5Cmu%20%3D0,若該方程有2個(gè)不同的根(兩個(gè)不等實(shí)根或一對(duì)共軛虛根,也即判別式不為0)時(shí),其通項(xiàng)公式可以寫成a_n%3DC_1%5Ccdot%20t_1%5En%2BC_2%5Ccdot%20t_2%5En

ps:關(guān)于二階線性遞推筆者寫過(guò)兩篇文章分享自己個(gè)人粗淺的理解,可以參考:

深探特征根的奧妙

幾類特殊遞推數(shù)列的矩陣算法(前篇)

有了這一背景,我們就可以快速找到突破口了

設(shè)x%2Cy為關(guān)于t的方程t%5E2%2B%5Clambda%20t%2B%5Cmu%20%3D0的兩根

記數(shù)列a_n%3Da%5Ccdot%20x%5En%2Bb%5Ccdot%20y%5En

則該數(shù)列對(duì)應(yīng)的線性遞推式為:a_%7Bn%2B2%7D%2B%5Clambda%20a_%7Bn%2B1%7D%2B%5Cmu%20a_n%3D0

條件化為已知:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Aa_1%3D3%20%5C%5C%0Aa_2%3D7%20%5C%5C%0Aa_3%3D16%20%5C%5C%0Aa_4%3D42%0A%5Cend%7Bmatrix%7D%5Cright.,目標(biāo)化為求a_5

遞推式賦值n=1得:

16%2B7%5Clambda%2B3%5Cmu%3D0

遞推式賦值n=2得:

42%2B16%5Clambda%2B7%5Cmu%3D0

聯(lián)立①②解得:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Clambda%20%3D14%20%5C%5C%0A%5Cmu%20%3D-38%0A%5Cend%7Bmatrix%7D%5Cright.

因此遞推式即:a_%7Bn%2B2%7D%2B14a_%7Bn%2B1%7D-38a_n%3D0

遞推式賦值n=3得:

a_%7B5%7D%2B14a_%7B4%7D-38a_3%3D0%5CRightarrow%20a_5%3D20


題后思考:牛頓恒等式以及二階線性遞推相同點(diǎn)是都涉及了二次方程的根的問(wèn)題,那么產(chǎn)生最后一題這種非對(duì)稱式的原因在何處呢?答案是初始值問(wèn)題。

舉一例為說(shuō)明:

線性遞推a_%7Bn%2B2%7D-3a_%7Bn%2B1%7D%2B1%3D0,其對(duì)應(yīng)特征根方程為t%5E2-3t%2B1%3D0

則其通項(xiàng)公式形式:a_n%3DC_1%5Ccdot%20t_1%5En%2BC_2%5Ccdot%20t_2%5En

顯然,這里的待定常數(shù)C?,C?由初值a?,a?決定(將a?,a?代入解線性方程組即得)

因此只有當(dāng)初值a_1%2Ca_2滿足特殊情況時(shí)通項(xiàng)公式才會(huì)是對(duì)稱的

即當(dāng)初值滿足%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Aa_1%3DP_1%3De_1%3D3%20%5C%5C%0Aa_2%3DP_2%3De_1%5E2-2e_2%3D7%0A%5Cend%7Bmatrix%7D%5Cright.時(shí)通項(xiàng)公式對(duì)稱,此時(shí)遞推式即牛頓恒等式

遞推是數(shù)學(xué)中及其重要且美妙的思想,其是通過(guò)概括前后關(guān)系來(lái)反應(yīng)規(guī)律的一種重要手段。還有許多的遞推應(yīng)用就不一一枚舉了,有待通過(guò)研究去發(fā)掘其精華,發(fā)覺數(shù)學(xué)那份優(yōu)雅樸素的美感!


利用牛頓恒等式解決對(duì)稱和問(wèn)題的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
望江县| 天等县| 宜春市| 福安市| 鄢陵县| 纳雍县| 子长县| 抚顺市| 梁河县| 永春县| 扎兰屯市| 抚州市| 大石桥市| 嫩江县| 文化| 山东| 阳曲县| 阿拉善右旗| 泰宁县| 青铜峡市| 轮台县| 贵港市| 平昌县| 华安县| 民和| 包头市| 垣曲县| 汾阳市| 托克逊县| 保靖县| 光泽县| 商南县| 汉川市| 临沂市| 肇州县| 田东县| 海宁市| 宣汉县| 漳浦县| 闸北区| 咸宁市|