最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Golden Ratio

2021-07-04 11:40 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The golden ratio is a special ratio between two quantities in which the ratio between the two quantities is equal to the ratio of their sum to the larger of the two quantities. In modern mathematical notation:

%5Cfrac%7Ba%7D%7Bb%7D%20%20%3D%20%5Cfrac%7Ba%2Bb%7D%7Ba%7D%20

where a%3Eb. Solve for the ratio a%3Ab.

?

【Solution】

Figure 1

?%5Cfrac%7Ba%7D%7Bb%7D%20%20%3D%20%5Cfrac%7Ba%2Bb%7D%7Ba%7D%20

a%5E2%3Db(a%2Bb)%0A

a%5E2%3Dba%2Bb%5E2%0A%0A

a%5E2-ba%3Db%5E2%0A

Solve for ?a by completing the square.

(a-b%2F2)%5E2%3Db%5E2%2B(b%2F2)%5E2%0A%0A

%0A(a-%5Cfrac%7Bb%7D%7B2%7D)%5E2%3D%5Cfrac%7B(5b)%5E2%7D%7B4%7D%0A

Take the positive root (negative lengths are not permissible)

a-%5Cfrac%7Bb%7D%7B2%7D%3D%5Cfrac%7B%5Csqrt%7B5%7D%20b%7D%7B2%7D%0A%0A

a%3D%5Cfrac%7B(1%2B%5Csqrt%7B5%7D)b%7D%7B2%7D%0A

and obtain

a%3Ab%3D%5Cfrac%7B1%2B%5Csqrt%7B5%7D%7D%7B2%7D%3A1

[Geometry] Golden Ratio的評論 (共 條)

分享到微博請遵守國家法律
大冶市| 巴马| 东方市| 平安县| 宣城市| 广水市| 静宁县| 阿荣旗| 明光市| 中超| 涞水县| 扬中市| 论坛| 桦南县| 金门县| 定南县| 新余市| 林周县| 阜阳市| 琼结县| 乃东县| 镇康县| 无锡市| 泰宁县| 普安县| 鄄城县| 威信县| 克东县| 汉源县| 来宾市| 南乐县| 孝义市| 江口县| 和平区| 达孜县| 平定县| 巨鹿县| 会同县| 临夏县| 衡水市| 昆明市|