最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

橢圓中的“圓冪定理”

2022-09-07 13:43 作者:數(shù)學(xué)老頑童  | 我要投稿


如圖:過點P(不在橢圓%5CGamma%20上)的直線ABCD分別與橢圓%5CGamma%20%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)交于A、BC、D,則:

%5Cbbox%5B%23def%2C5px%2Cborder%3A2px%20solid%20%23FF6A6A%5D%7B%5Cfrac%7B%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%7D%7Br_%7BAB%7D%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cleft%7C%20PC%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PD%20%5Cright%7C%7D%7Br_%7BCD%7D%5E%7B2%7D%7D%7D

注1:其中r_%7BAB%7Dr_%7BCD%7D分別為直線AB、CD方向半徑.

注2:直線的方向半徑指的是與直線平行共線的半徑.

證明:設(shè)點P的坐標為%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

直線AB、CD的傾斜角分別為%5Calpha%20、%5Cbeta%20

直線AB、CD的方向半徑分別為%5Cleft%7C%20OM%20%5Cright%7C、%5Cleft%7C%20ON%20%5Cright%7C,如圖:

設(shè)直線OM的參數(shù)方程為%5Cbegin%7Bcases%7D%09x%3Dt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t為參數(shù)),

與橢圓%5CGamma%20聯(lián)立解得t_%7BM%7D%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%7D,所以

r_%7BAB%7D%5E%7B2%7D%3D%5Cleft%7C%20OM%20%5Cright%7C%5E2%3Dt_%7BM%7D%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%7D,

設(shè)直線AB的參數(shù)方程為%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t為參數(shù)),

與橢圓%5CGamma%20聯(lián)立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0,

所以

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%26%3D%5Cleft%7C%20t_1%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20t_2%20%5Cright%7C%3D%5Cleft%7C%20t_1t_2%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B%5Cleft%7C%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright%7C%7D%7B%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%7D%5C%5C%0A%09%5Cend%7Baligned%7D

所以%5Cfrac%7B%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%7D%7Br_%7BAB%7D%5E%7B2%7D%7D%3D%5Cleft%7C%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright%7C

同理可得%5Cfrac%7B%5Cleft%7C%20PC%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PD%20%5Cright%7C%7D%7Br_%7BCD%7D%5E%7B2%7D%7D%3D%5Cleft%7C%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright%7C

所以%5Cfrac%7B%5Cleft%7C%20PA%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PB%20%5Cright%7C%7D%7Br_%7BAB%7D%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cleft%7C%20PC%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20PD%20%5Cright%7C%7D%7Br_%7BCD%7D%5E%7B2%7D%7D.

證畢.

橢圓中的“圓冪定理”的評論 (共 條)

分享到微博請遵守國家法律
阜南县| 东宁县| 绵阳市| 浦城县| 肥西县| 东宁县| 墨竹工卡县| 八宿县| 六枝特区| 云浮市| 建阳市| 达孜县| 渝北区| 连江县| 涪陵区| 同仁县| 钦州市| 额尔古纳市| 吉水县| 河东区| 万州区| 昭通市| 浦江县| 尖扎县| 通城县| 社会| 仙桃市| 东方市| 凤城市| 江门市| 房山区| 华安县| 罗源县| 永康市| 葫芦岛市| 凌云县| 古浪县| 高碑店市| 永新县| 蒲江县| 吉隆县|