最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

量子場(chǎng)論(八):量子龐加萊變換的生成元算符

2022-11-25 22:17 作者:我的世界-華汁  | 我要投稿

時(shí)空坐標(biāo)的龐加萊變換(%5CLambda%2Ca)為:

x%5E%7B%5Cprime%5Cmu%7D%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20x%5E%5Cnu%2Ba%5E%5Cmu.%5Ctag%7B8.1%7D

它是洛倫茲變換與時(shí)空平移的組合。如果量子系統(tǒng)既有洛倫茲對(duì)稱性又有時(shí)空平移對(duì)稱性,那么龐加萊變換(%5CLambda%2Ca)(這里的洛倫茲變換是固有保時(shí)向的)能誘導(dǎo)出態(tài)矢%7C%5CPsi%5Crangle的線性幺正變換:

%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Chat%20U(%5CLambda%2Ca)%7C%5CPsi%5Crangle.%5Ctag%7B8.2%7D

U(%5CLambda%2Ca)是一個(gè)線性幺正算符,描述量子龐加萊變換,它滿足:

%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca)%5Chat%20U(%5CLambda%2Ca)%3D%5Chat%20U(%5CLambda%2Ca)%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca)%3D1%2C%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%3D%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca).%5Ctag%7B8.3%7D

算符的幺正性保證態(tài)矢的內(nèi)積在量子龐加萊變換下不變:

%5Clangle%5CPsi%5E%5Cprime%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Clangle%5CPsi%7C%5Chat%20U%5E%5Cdagger(%5CLambda%2Ca)%5Chat%20U(%5CLambda%2Ca)%7C%5CPsi%5Crangle%3D%5Clangle%5CPsi%7C%5CPsi%5Crangle.%5Ctag%7B8.4%7D

%5Chat%20U(%5Cmathbf%201%2C0)%3D1是恒等變換算符。a%5E%5Cmu%3D0對(duì)應(yīng)于洛倫茲變換,因此:

%5Chat%20U(%5CLambda)%5Cequiv%5Chat%20U(%5CLambda%2C0).%5Ctag%7B8.5%7D

這是量子洛倫茲變換。%5Chat%20U(%5Cmathbf%201%2Ca)描述量子時(shí)空平移變換。

對(duì)時(shí)空坐標(biāo)先做龐加萊變換(%5CLambda_1%2Ca_1)%2C再做龐加萊變換(%5CLambda_2%2Ca_2)%2C得到:

x%5E%7B%5Cprime%5Cprime%5Cmu%7D%3D%7B(%5CLambda_2)%5E%5Cmu%7D_%5Cnu%20x%5E%7B%5Cprime%5Cnu%7D%2Ba%5E%5Cmu_2%3D%7B(%5CLambda_2)%5E%5Cmu%7D_%5Cnu%5B%7B(%5CLambda)%5E%5Cnu%7D_%5Crho%20x%5E%7B%5Crho%7D%2Ba%5E%5Cnu_1%5D%2Ba%5E%5Cmu_2%3D%7B(%5CLambda_2%5CLambda_1)%5E%5Cmu%7D_%5Cnu%20x%5E%5Cnu%2B%7B(%5CLambda_2)%5E%5Cmu%7D_%5Cnu%20a%5E%5Cnu_1%2Ba%5E%5Cmu_2.%5Ctag%7B8.6%7D

這相當(dāng)于做龐加萊變換(%5CLambda_2%5CLambda_1%2C%5CLambda_2a_1%2Ba_2)%2C因而存在同態(tài)關(guān)系:

%5Chat%20U(%5CLambda_2%2Ca_2)%5Chat%20U(%5CLambda_1%2Ca_1)%3D%5Chat%20U(%5CLambda_2%5CLambda_1%2C%5CLambda_2%20a_2%2Ba_1)%2C%5Chat%20U(%5CLambda_2)%5Chat%20U(%5CLambda_1)%3D%5Chat%20U(%5CLambda_2%5CLambda_1).%5Ctag%7B8.7%7D

因此,集合%5C%7B%5Chat%20U(%5CLambda%2Ca)%5C%7D%5C%7B%5Chat%20U(%5CLambda)%5C%7D分別構(gòu)成龐加萊群和洛倫茲群的無(wú)窮維幺正線性表示。從而,由:

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20U(%5CLambda%2Ca)%3D1%3D%5Chat%20U(%5Cmathbf%201%2C0)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D%5CLambda%2C%5CLambda%5E%7B-1%7Da-%5CLambda%5E%7B-1%7Da)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D%2C-%5CLambda%5E%7B-1%7Da)%5Chat%20U(%5CLambda%2Ca).%5Ctag%7B8.8%7D

得到逆變換算符:

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D%2C-%5CLambda%5E%7B-1%7Da)%2C%5Chat%20U%5E%7B-1%7D(%5CLambda)%3D%5Chat%20U(%5CLambda%5E%7B-1%7D).%5Ctag%7B8.9%7D

無(wú)窮小洛倫茲變換的矩陣形式是%5CLambda%3D%5Cmathbf1%2B%5Comega%2C無(wú)窮小時(shí)空平移變換為a%5E%5Cmu%3D%5Cvarepsilon%5E%5Cmu%2C其中%5Comega%2C%5Cvarepsilon%5E%5Cmu是無(wú)窮小量。從而,無(wú)窮小龐加萊變換(%5Cmathbf1%2B%5Comega%2C%5Cvarepsilon%20)的無(wú)窮小算符為:

%5Chat%20U(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon%20)%3D1%2B%5Comega%20_%7B%5Cmu%5Cnu%7D%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Comega_%7B%5Cmu%5Cnu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%2B%5Cvarepsilon%20_%5Cmu%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Cvarepsilon%20_%7B%5Cmu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%3D1-%5Cfrac%20i2%5Comega%20_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i%5Cvarepsilon_%5Cmu%20%5Chat%20P%5E%5Cmu.%5Ctag%7B8.10%7D%20

其中:

%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D2i%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Comega_%7B%5Cmu%5Cnu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%2C%5Chat%20P%5E%5Cmu%3Di%5Cfrac%7B%5Cpartial%5Chat%20U(%5CLambda%20%2Ca)%7D%7B%5Cpartial%5Comega_%7B%5Cmu%5Cnu%7D%20%7D%5Cbigg%7C_%7B%5Cvarepsilon%20_%7B%5Cmu%7D%3D0%2C%5Cvarepsilon_%5Cmu%3D0%20%7D%20.%5Ctag%7B8.11%7D%20

分別是量子洛倫茲變換和量子時(shí)空平移變換的生成元算符。%5Chat%20J%5E%7B%5Cmu%5Cnu%7D是反對(duì)稱的,即:

%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D-%5Chat%20J%5E%7B%5Cnu%5Cmu%7D.%5Ctag%7B8.12%7D

于是%5Chat%20J%5E%7B%5Cmu%5Cnu%7D有6個(gè)獨(dú)立分量,%5Chat%20P%5E%7B%5Cmu%7D有4個(gè)獨(dú)立分量。由%5Chat%20U(%5Cmathbf1%2B%5Comega%2C%5Cvarepsilon%20)的幺正性可知生成元算符也是幺正的:

(%5Chat%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Cdagger%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2C(%5Chat%20P%5E%5Cmu)%5E%5Cdagger%3D%5Chat%20P%5E%7B%5Cmu%7D.%5Ctag%7B8.13%7D

根據(jù)逆變換(8.9)和同態(tài)關(guān)系(8.7),有:

%5Cbegin%7Balign%7D%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20U(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon%20)%5Chat%20U(%5CLambda%2Ca)%26%3D%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)(1-%5Cfrac%20i2%5Comega%20_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i%5Cvarepsilon_%5Cmu%20%5Chat%20P%5E%5Cmu)%5Chat%20U(%5CLambda%2Ca)%5C%5C%26%3D1-%5Cfrac%20i2%5Comega%20_%7B%5Cmu%5Cnu%7D%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda%2Ca)-i%5Cvarepsilon%20_%5Cmu%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda%2Ca).%5Cend%7Balign%7D%5Ctag%7B8.14%7D

%5Chat%20U(%5Cmathbf%201%2B%5CLambda%5E%7B-1%7D%5Comega%5CLambda%2C%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)%3D1-%5Cfrac%20i2(%5CLambda%5E%7B-1%7D%5Comega%5CLambda)_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i(%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)_%5Cmu%5Chat%20P%5E%5Cmu.%5Ctag%7B8.15%7D

利用%7B(%5CLambda%5E%7B-1%7D)%5E%5Calpha%7D_%5Cbeta%3Dg%5E%7B%5Calpha%20%5Csigma%20%7Dg_%7B%5Cbeta%20%5Crho%20%7D%7B%5CLambda%5E%5Crho%7D_%5Csigma%2C有:

%5Cbegin%7Balign%7D(%5CLambda%5E%7B-1%7D%5Comega%5CLambda)_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%26%3Dg_%7B%5Cmu%5Calpha%7D%7B(%5CLambda%5E%7B-1%7D%5Comega%20%5CLambda%20)%5E%5Calpha%20%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3Dg_%7B%5Cmu%5Calpha%7D%7B(%5CLambda%5E%7B-1%7D)%5E%5Calpha%7D_%5Cbeta%7B%5Comega%5E%5Cbeta%7D_%5Cgamma%7B%5CLambda%5E%5Cgamma%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5C%5C%26%3Dg_%7B%5Cmu%5Calpha%7Dg%5E%7B%5Calpha%20%5Csigma%20%7Dg_%7B%5Cbeta%20%5Crho%20%7D%7B%5CLambda%5E%5Crho%20%7D_%5Csigma%20%7B%5Comega%5E%5Cbeta%7D_%5Cgamma%7B%5CLambda%5E%5Cgamma%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D%7B%5CLambda%5E%5Crho%7D_%5Cmu%5Comega_%7B%5Crho%5Cgamma%7D%7B%5CLambda%5E%5Cgamma%7D_%5Cnu%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%3D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Cmu%5Crho%7D.%5Ctag%7B8.16%7D%5Cend%7Balign%7D

%5Cbegin%7Balign%7D(%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)_%5Cmu%5Chat%20P%5E%5Cmu%26%3Dg_%7B%5Cmu%5Cnu%7D%7B(%5CLambda%5E%7B-1%7D)%5E%5Cnu%7D_%5Crho(%7B%5Comega%5E%5Crho%7D_%5Csigma%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon%5E%5Crho%5Chat%20P%5E%5Cmu)%3Dg_%7B%5Cmu%5Cnu%7Dg%5E%7B%5Cnu%5Cbeta%7Dg_%7B%5Crho%5Calpha%7D%7B%5CLambda%5E%5Calpha%7D_%5Cbeta(%7B%5Comega%5E%5Crho%7D_%5Csigma%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon%5E%5Crho%5Chat%20P%5E%5Cmu)%5C%5C%26%3D%7B%5Cdelta%5E%5Cbeta%7D_%5Cmu%7B%5CLambda%5E%5Calpha%7D_%5Cbeta(%7B%5Comega%7D_%7B%5Calpha%5Csigma%7D%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon_%5Calpha%5Chat%20P%5E%5Cmu)%3D%7B%5Comega%7D_%7B%5Calpha%5Csigma%7D%7B%5CLambda%5E%5Calpha%7D_%5Cmu%20a%5E%5Csigma%5Chat%20P%5E%5Cmu%2B%5Cvarepsilon_%5Calpha%7B%5CLambda%5E%5Calpha%7D_%5Cmu%5Chat%20P%5E%5Cmu%5C%5C%26%3D%5Cfrac12%5Comega_%7B%5Cmu%5Cnu%7D(%7B%5CLambda%5E%5Cmu%7D_%5Crho%20a%5E%5Cnu%5Chat%20P%5E%5Crho-%7B%5CLambda%5E%5Cnu%7D_%5Crho%20a%5E%5Cmu%5Chat%20P%5E%5Crho)%2B%5Cvarepsilon%20_%5Cmu%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Cend%7Balign%7D%5Ctag%7B8.17%7D

代入(8.15)式,得到:

%5Chat%20U(%5Cmathbf%201%2B%5CLambda%5E%7B-1%7D%5Comega%5CLambda%2C%5CLambda%5E%7B-1%7D%5Comega%20a%2B%5CLambda%5E%7B-1%7D%5Cvarepsilon)%3D1-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D(%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%2B%7B%5CLambda%5E%5Cmu%7D_%5Crho%20a%5E%5Cnu%5Chat%20P%5E%5Crho-%7B%5CLambda%5E%5Cnu%7D_%5Crho%20a%5E%5Cmu%5Chat%20P%5E%5Crho)-i%5Cvarepsilon_%5Cmu%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.18%7D

與(8.14)式比較,得到:

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda%2Ca)%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%2B%7B%5CLambda%5E%5Cmu%7D_%5Crho%20a%5E%5Cnu%5Chat%20P%5E%5Crho-%7B%5CLambda%5E%5Cnu%7D_%5Crho%20a%5E%5Cmu%5Chat%20P%5E%5Crho.%5Ctag%7B8.19%7D

%5Chat%20U%5E%7B-1%7D(%5CLambda%2Ca)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda%2Ca)%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.20%7D

a%5E%5Cmu%3D0%2C龐加萊變換變?yōu)槁鍌惼澴儞Q:

%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D.%5Ctag%7B8.21%7D

%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.22%7D

可以得到生成元在態(tài)矢%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Chat%20U(%5CLambda)%7C%5CPsi%5Crangle中的期待值:

%5Clangle%5CPsi%5E%5Cprime%7C%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Clangle%5CPsi%7C%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%7C%5CPsi%5Crangle%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Clangle%5CPsi%7C%5Chat%20J%5E%7B%5Crho%5Csigma%7D%7C%5CPsi%5Crangle.%5Ctag%7B8.23%7D

%5Clangle%5CPsi%5E%5Cprime%7C%5Chat%20P%5E%5Cmu%7C%5CPsi%5E%5Cprime%5Crangle%3D%5Clangle%5CPsi%7C%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda)%7C%5CPsi%5Crangle%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Clangle%5CPsi%7C%5Chat%20P%5E%5Cnu%7C%5CPsi%5Crangle.%5Ctag%7B8.24%7D

可將%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%5Cmu%5Chat%20U(%5CLambda)看做由洛倫茲變換%5CLambda誘導(dǎo)的%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20P%5E%5Cmu的洛倫茲變換:

%5Chat%20J%5E%7B%5Cprime%5Cmu%5Cnu%7D%3D%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Crho%7B%5CLambda%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D.%5Ctag%7B8.25%7D

%5Chat%20P%5E%7B%5Cprime%5Cmu%7D%3D%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%7B%5Cmu%7D%5Chat%20U(%5CLambda)%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu.%5Ctag%7B8.26%7D

這說(shuō)明%5Chat%20J%5E%7B%5Cmu%5Cnu%7D是個(gè)二階張量算符,%5Chat%20P%5E%5Cmu是個(gè)四維矢量算符。

量子場(chǎng)論(八):量子龐加萊變換的生成元算符的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
永靖县| 东乡| 万山特区| 广宁县| 永春县| 依兰县| 门头沟区| 沅陵县| 额济纳旗| 广宗县| 图木舒克市| 龙山县| 普宁市| 万宁市| 昌都县| 邳州市| 岳阳县| 万盛区| 信阳市| 平遥县| 南平市| 堆龙德庆县| 虹口区| 赤水市| 仪征市| 邮箱| 延川县| 隆子县| 泸定县| 桑日县| 江北区| 商水县| 噶尔县| 平顶山市| 阿城市| 昌图县| 胶州市| 垦利县| 太仓市| 屏边| 江永县|