最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

2023浙江大學(xué)強基數(shù)學(xué)逐題解析(6)

2023-06-24 21:59 作者:CHN_ZCY  | 我要投稿

封面:《不當(dāng)哥哥了》


14. 已知數(shù)列%5Cleft%5C%7Ba_n%5Cright%5C%7D中有a_1%3D%5Cfrac%7B1%7D%7B2%7D,

a_%7Bn%2B1%7D%3D%5Cfrac%7Ba_n%7D%7B%5Cleft(1-%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7Da_n%2B%5Csqrt%7B2%7D%2B1%7D%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Csqrt%5Bn%5D%7Ba_n%7D%3D___________.

答案??%5Csqrt%7B2%7D-1

解析

%5Cfrac%7B1%7D%7Ba_%7Bn%2B1%7D%7D%3D%5Cleft(1-%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D%2B%5Cfrac%7B%5Csqrt%7B2%7D%2B1%7D%7Ba_n%7D

%5Cfrac%7B1%7D%7B%5Cleft(%5Csqrt%7B2%7D%2B1%5Cright)%5E%7Bn%2B1%7Da_%7Bn%2B1%7D%7D%3D%5Cleft(2%5Csqrt%7B2%7D-3%5Cright)%5E%7Bn%2B1%7D%2B%5Cfrac%7B1%7D%7B%5Cleft(%5Csqrt%7B2%7D%2B1%5Cright)%5Ena_n%7D

所以

%5Cbegin%7Baligned%7D%0A%5Cfrac%7B1%7D%7B%5Cleft(%5Csqrt%7B2%7D%2B1%5Cright)%5E%7Bn%7Da_%7Bn%7D%7D%26%3D%5Cfrac%7B1%7D%7B%5Cleft(%5Csqrt%7B2%7D%2B1%5Cright)%5E1a_1%7D%2B%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%5Cleft(2%5Csqrt%7B2%7D-3%5Cright)%5Ei%20%5C%5C%26%0A%3D2%5Csqrt%7B2%7D-2%2B%5Cfrac%7B%5Cleft(%5Csqrt%7B2%7D-1%5Cright)%5E3%5Cleft%5B1-%5Cleft(2%5Csqrt%7B2%7D-3%5Cright)%5E%7Bn-1%7D%5Cright%5D%7D%7B2%5Csqrt%7B2%7D%7D%0A%5Cend%7Baligned%7D

a_n%3D%5Cfrac%7B2%5Csqrt%7B2%7D%7D%7B%5Cleft(1%2B%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D-%5Cleft(1-%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D%7D

所以

%5Cbegin%7Baligned%7D%0A%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%7B%5Csqrt%5Bn%5D%7Ba_n%7D%7D%26%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%7B%5Cleft%5B%5Cfrac%7B2%5Csqrt%7B2%7D%7D%7B%5Cleft(1%2B%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D-%5Cleft(1-%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%7D%5C%5C%26%0A%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft%5B%5Cleft(1%2B%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D-%5Cleft(1-%5Csqrt%7B2%7D%5Cright)%5E%7Bn%2B1%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%7D%7D%5C%5C%26%0A%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(1%2B%5Csqrt%7B2%7D%5Cright)%5Cleft%5B1-%5Cleft(2%5Csqrt%7B2%7D-3%5Cright)%5E%7Bn%2B1%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%7D%7D%5C%5C%26%0A%3D%5Cfrac%7B1%7D%7B1%2B%5Csqrt%7B2%7D%7D%5C%5C%26%0A%3D%5Csqrt%7B2%7D-1%0A%0A%5Cend%7Baligned%7D

15.?

%5Cfrac%7B%5Ctan96%5E%5Ccirc-%5Ctan12%5E%5Ccirc%5Cleft(1%2B%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Cright)%7D%7B1%2B%5Ctan96%5E%5Ccirc%5Ctan12%5E%5Ccirc%5Cleft(1%2B%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Cright)%7D

的值為___________.

答案??%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D

解析

%5Cbegin%7Baligned%7D%0A%5Ctan12%5E%5Ccirc%5Cleft(1%2B%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Cright)%26%3D%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Ccdot%5Ctan12%5E%5Ccirc%5Cleft(%5Csin6%5E%5Ccirc%2B1%5Cright)%5C%5C%26%3D%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Ccdot%5Ctan12%5E%5Ccirc%5Cleft(1-%5Ccos96%5E%5Ccirc%5Cright)%5C%5C%26%3D%5Cfrac%7B%5Csin96%5E%5Ccirc%7D%7B%5Csin6%5E%5Ccirc%7D%5Ccdot%5Ctan12%5E%5Ccirc%5Ccdot%5Cfrac%7B1-%5Ccos96%5E%5Ccirc%7D%7B%5Csin96%5E%5Ccirc%7D%5C%5C%26%3D%5Cfrac%7B%5Ccos6%5E%5Ccirc%7D%7B%5Csin6%5E%5Ccirc%7D%5Ccdot%5Ctan12%5E%5Ccirc%5Ccdot%5Ctan48%5E%5Ccirc%5C%5C%26%3D%5Cfrac%7B%5Ctan12%5E%5Ccirc%5Ccdot%5Ctan48%5E%5Ccirc%7D%7B%5Ctan6%5E%5Ccirc%7D%5C%5C%26%3D%5Cfrac%7B%5Ctan12%5E%5Ccirc%5Ctan48%5E%5Ccirc%5Ctan54%5E%5Ccirc%5Ctan66%5E%5Ccirc%5Ctan72%5E%5Ccirc%7D%7B%5Ctan6%5E%5Ccirc%5Ctan54%5E%5Ccirc%5Ctan66%5E%5Ccirc%5Ctan72%5E%5Ccirc%7D%5C%5C%26%3D%5Cfrac%7B%5Ctan36%5E%5Ccirc%5Ctan54%5E%5Ccirc%5Ctan66%5E%5Ccirc%7D%7B%5Ctan18%5E%5Ccirc%5Ctan72%5E%5Ccirc%7D%5C%5C%26%3D%5Ctan66%5E%5Ccirc%0A%5Cend%7Baligned%7D

所以

%5Cfrac%7B%5Ctan96%5E%5Ccirc-%5Ctan12%5E%5Ccirc%5Cleft(1%2B%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Cright)%7D%7B1%2B%5Ctan96%5E%5Ccirc%5Ctan12%5E%5Ccirc%5Cleft(1%2B%5Cfrac%7B1%7D%7B%5Csin6%5E%5Ccirc%7D%5Cright)%7D%3D%5Cfrac%7B%5Ctan96%5E%5Ccirc-%5Ctan66%5E%5Ccirc%7D%7B1%2B%5Ctan96%5E%5Ccirc%5Ctan66%5E%5Ccirc%7D%3D%5Ctan30%5E%5Ccirc%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D

16. 已知數(shù)列%5Cleft%5C%7Ba_n%5Cright%5C%7D滿足a_1%3D1a_%7Bn%2B1%7D%3D%5Cfrac%7Ba_n%7D%7B2a_n%5E2%2B1%7D,則%5Cleft%5B2%5Clg%20a_%7B2023%7D%5Cright%5D%3D___________.

答案??-4

解析

a_%7Bn%2B1%7D%3D%5Cfrac%7Ba_n%7D%7B2a_n%5E2%2B1%7D,即

%5Cfrac%7B1%7D%7Ba_%7Bn%2B1%7D%7D%3D2a_n%2B%5Cfrac%7B1%7D%7Ba_n%7D

%5Cfrac%7B1%7D%7Ba_%7Bn%2B1%7D%5E2%7D%3D4a_n%5E2%2B%5Cfrac%7B1%7D%7Ba_n%5E2%7D%2B4

所以

%5Cfrac%7B1%7D%7Ba_%7Bn%7D%5E2%7D%3D4%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%7Ba_i%5E2%7D%2B%5Cfrac%7B1%7D%7Ba_1%5E2%7D%2B4%5Cleft(n-1%5Cright)%3D4n-3%2B4%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%7Ba_i%5E2%7D

因此

%5Cfrac%7B1%7D%7Ba_%7Bn%7D%5E2%7D%3D4n-3%2B4%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%7Ba_i%5E2%7D%5Cgeq4n-3

a_n%5E2%5Cleq%5Cfrac%7B1%7D%7B4n-3%7D

當(dāng)且僅當(dāng)n%3D1時取等.

當(dāng)n%5Cgeq2%E4%B8%94n%5Cin%5Cmathbb%7BN%7D%5E*時,

%5Cbegin%7Baligned%7D%0A%5Cfrac%7B1%7D%7Ba_%7Bn%7D%5E2%7D%26%3D4n-3%2B4%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%7Ba_i%5E2%7D%5C%5C%26%3C4n-3%2B4%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%7B%5Cfrac%7B1%7D%7B4i-3%7D%7D%5C%5C%26%3D4n-3%2B%5Csum_%7Bi%3D1%7D%5E%7Bn-1%7D%7B%5Cfrac%7B1%7D%7Bi-%5Cfrac%7B3%7D%7B4%7D%7D%7D%5C%5C%26%3C4n-3%2B4%2B%5Csum_%7Bi%3D2%7D%5E%7Bn-1%7D%7B%5Cln%5Cfrac%7Bi-%5Cfrac%7B3%7D%7B4%7D%7D%7Bi-%5Cfrac%7B7%7D%7B4%7D%7D%7D%5C%5C%26%3D4n%2B1%2B%5Cln%5Cleft(4n-7%5Cright)%0A%5Cend%7Baligned%7D

a_n%5E2%3E%5Cfrac%7B1%7D%7B4n%2B1%2B%5Cln%5Cleft(4n-7%5Cright)%7D

所以當(dāng)n%5Cgeq2%E4%B8%94n%5Cin%5Cmathbb%7BN%7D%5E*時,

%5Cfrac%7B1%7D%7B4n%2B1%2B%5Cln%5Cleft(4n-7%5Cright)%7D%3Ca_n%5E2%3C%5Cfrac%7B1%7D%7B4n-3%7D

所以

10%5E%7B-4%7D%3C%5Cfrac%7B1%7D%7B8093%2B%5Cln%5Cleft(8085%5Cright)%7D%3Ca_%7B2023%7D%5E2%3C%5Cfrac%7B1%7D%7B8089%7D%3C10%5E%7B-3%7D

因此

-4%3C2%5Clg%20a_%7B2023%7D%3C-3

%5Cleft%5B2%5Clg%20a_%7B2023%7D%5Cright%5D%3D-4.

17. 已知正的十進制五位數(shù)n滿足2556%5Cmid%20n%5E3-1,則n在十進制下的各位數(shù)字之和的最小值為___________.

答案??7

解析

因為2556%3D2%5E2%5Ccdot3%5E2%5Ccdot71%5E1,所以

%5Cbegin%7Baligned%7D%0A2556%5Cmid%20n%5E3-1%20%26%5CLeftrightarrow%20%0A%5Cbegin%7Bcases%7D%0A4%20%5Cmid%20n%5E3-1%5C%5C%0A9%20%5Cmid%20n%5E3-1%5C%5C%0A71%20%5Cmid%20n%5E3-1%0A%5Cend%7Bcases%7D%0A%5C%5C%26%5CLeftrightarrow%20%0A%5Cbegin%7Bcases%7D%0An%5E3%20%5Cequiv%201%20%5Cpmod%204%20%5C%5C%0An%5E3%20%5Cequiv%201%20%5Cpmod%209%5C%5C%0An%5E3%20%5Cequiv%201%20%5Cpmod%20%7B71%7D%0A%5Cend%7Bcases%7D%0A%5C%5C%26%5CLeftrightarrow%20%0A%5Cbegin%7Bcases%7D%0An%20%5Cequiv%201%20%5Cpmod%204%20%5C%5C%0An%20%5Cequiv%201%20%5Cpmod%203%5C%5C%0An%5E3%20%5Cequiv%201%20%5Cpmod%20%7B71%7D%0A%5Cend%7Bcases%7D%0A%5Cend%7Baligned%7D

由于n%5E3%20%5Cequiv%201%20%5Cpmod%20%7B71%7D,所以%5Cleft(n%5E3%2C71%5Cright)%3D1.

由于71是質(zhì)數(shù),根據(jù)Fermat小定理,n%5E%7B70%7D%20%5Cequiv%201%20%5Cpmod%20%7B71%7D.

因為n%5E3%20%5Cequiv%201%20%5Cpmod%20%7B71%7D,所以%5Cdelta_%7B71%7D%5Cleft(n%5Cright)%5Cmid3.

因為n%5E%7B70%7D%20%5Cequiv%201%20%5Cpmod%20%7B71%7D,所以%5Cdelta_%7B71%7D%5Cleft(n%5Cright)%5Cmid70.

因此%5Cdelta_%7B71%7D%5Cleft(n%5Cright)%5Cmid%5Cleft(3%2C70%5Cright).

所以n%3Dn%5E%7B%5Cleft(3%2C70%5Cright)%7D%20%5Cequiv%201%20%5Cpmod%20%7B71%7D.

另一方面,當(dāng)n%5Cequiv%201%20%5Cpmod%20%7B71%7D時,n%5E3%20%5Cequiv%201%20%5Cpmod%20%7B71%7D.

所以

%5Cbegin%7Bcases%7D%0An%20%5Cequiv%201%20%5Cpmod%204%20%5C%5C%0An%20%5Cequiv%201%20%5Cpmod%203%5C%5C%0An%5E3%20%5Cequiv%201%20%5Cpmod%20%7B71%7D%0A%5Cend%7Bcases%7D%0A%5CLeftrightarrow%0A%5Cbegin%7Bcases%7D%0An%20%5Cequiv%201%20%5Cpmod%204%20%5C%5C%0An%20%5Cequiv%201%20%5Cpmod%203%5C%5C%0An%20%5Cequiv%201%20%5Cpmod%20%7B71%7D%0A%5Cend%7Bcases%7D

由中國剩余定理得

%5Cbegin%7Bcases%7D%0An%20%5Cequiv%201%20%5Cpmod%204%20%5C%5C%0An%20%5Cequiv%201%20%5Cpmod%203%5C%5C%0An%20%5Cequiv%201%20%5Cpmod%20%7B71%7D%0A%5Cend%7Bcases%7D%0A%5CLeftrightarrow%0An%5Cequiv1%5Cpmod%7B852%7D

n%3D852k%2B1%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright).

n是正的十進制五位數(shù),得

10%5E4%5Cleq852k%2B1%5Cleq10%5E5-1%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)

12%5Cleq%20k%5Cleq117%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright).

n在十進制下的各位數(shù)字之和為S%5Cleft(n%5Cright).

由于n%5Cequiv1%5Cpmod3,所以S%5Cleft(n%5Cright)%5Cequiv1%5Cpmod%203.

(1) 若S%5Cleft(n%5Cright)%3D1,則n%3D10000,則k%3D%5Cfrac%7B3333%7D%7B284%7D%5Cnotin%5Cmathbb%7BZ%7D,不符合題意.

(2) 若S%5Cleft(n%5Cright)%3D4,則n的個位小于或等于3.?

n%5Cequiv1%5Cpmod2,所以n的個位為1或3.

(i) 若n的個位為3,則n%3D10003,則k%3D%5Cfrac%7B1667%7D%7B142%7D%5Cnotin%5Cmathbb%7BZ%7D,不符合題意.

(ii) 若n的個位為1,則

k%3D5t%5Cleft(t%5Cin%5Cmathbb%7BZ%7D%E4%B8%943%5Cleq%20t%5Cleq23%5Cright)

n%3D4260t%2B1%5Cleft(t%5Cin%5Cmathbb%7BZ%7D%E4%B8%943%5Cleq%20t%5Cleq23%5Cright)

由于S%5Cleft(n%5Cright)%3D4,所以n的萬位不大于3.

① 若n的萬位為3,則n%3D30001,則k%3D%5Cfrac%7B2500%7D%7B71%7D%5Cnotin%5Cmathbb%7BZ%7D,不符合題意.

② 若n的萬位不超過2,則

10001%5Cleq4260t%2B1%5Cleq29991%5Cleft(t%5Cin%5Cmathbb%7BZ%7D%E4%B8%943%5Cleq%20t%5Cleq23%5Cright)

3%5Cleq%20t%5Cleq7%5Cleft(t%5Cin%5Cmathbb%7BZ%7D%5Cright).

t%3D3,則n%3D12781S%5Cleft(n%5Cright)%3D19%5Cneq4,不符合題意.

t%3D4,則n%3D17041,S%5Cleft(n%5Cright)%3D13%5Cneq4,不符合題意.

t%3D5,則n%3D21301,S%5Cleft(n%5Cright)%3D7%5Cneq4,不符合題意.

t%3D6,則n%3D25561,S%5Cleft(n%5Cright)%3D19%5Cneq4,不符合題意.

t%3D7,則n%3D29821,S%5Cleft(n%5Cright)%3D22%5Cneq4,不符合題意.

(3) 若S%5Cleft(n%5Cright)%3D7,取k%3D25,此時n%3D21301,符合題意.

綜上,n在十進制下的各位數(shù)字之和的最小值為7.

2023浙江大學(xué)強基數(shù)學(xué)逐題解析(6)的評論 (共 條)

分享到微博請遵守國家法律
滦南县| 来凤县| 万年县| 闽清县| 平江县| 济源市| 睢宁县| 阿勒泰市| 邢台市| 探索| 丰顺县| 瑞安市| 哈密市| 娱乐| 桑植县| 宜君县| 鄢陵县| 法库县| 嘉黎县| 靖安县| 金秀| 连城县| 北辰区| 平南县| 乌拉特中旗| 巴彦淖尔市| 蒙城县| 华坪县| 锦州市| 临沧市| 遂平县| 永城市| 石泉县| 集安市| 平阴县| 龙游县| 南漳县| 米林县| 苗栗市| 门头沟区| 汤原县|