最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Sum of Squares

2021-07-10 18:34 作者:AoiSTZ23  | 我要投稿

?By: Tao Steven Zheng (鄭濤)

【Problem】

In his work "On Spirals", Archimedes (287 – 212 BC) derived the formula for calculating the sum of consecutive perfect squares. Figure 1 shows the geometric representation of the sum

1%5E2%2B2%5E2%2B3%5E2%2B4%5E2%2B5%5E2

used by Archimedes. He was able to derive the formula

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Explain Archimedes’ proof of the sum of consecutive perfect squares using modern algebraic notation.

Figure 1

【Solution】

?Figure 1 represents the equation

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B(1%2B2%2B3%2B%E2%8B%AF%2Bn)

Since

1%2B2%2B3%2B%E2%8B%AF%2Bn%3D%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

it follows that

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn(n%2B1)(n%2B%5Cfrac%7B1%7D%7B2%7D)

1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Consequently,

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D


[Series] Sum of Squares的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
永清县| 东平县| 安多县| 东丽区| 兰考县| 张家口市| 永春县| 会理县| 柞水县| 乌审旗| 宁阳县| 宝清县| 通州市| 靖江市| 洛隆县| 两当县| 江川县| 华亭县| 伊通| 陵川县| 新泰市| 旬邑县| 马尔康县| 塘沽区| 鞍山市| 交口县| 南皮县| 连山| 五家渠市| 新疆| 集贤县| 高邮市| 石狮市| 黎川县| 南汇区| 游戏| 江口县| 北海市| 嘉峪关市| 天柱县| 铅山县|