最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Number Theory] Objects of Unknown Number

2021-09-04 19:45 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The following problem is from the Sunzi Suanjing (孫子算經(jīng)), a text written by an obscure mathematician with the surname Sun (name unknown) sometime around the 3rd to 5th centuries AD.

Suppose we have an unknown number of objects. When counted in threes,?2?are left over, when counted in fives,?3?are left over, and when counted in sevens,?2?are left over. How many objects are there?

[Assume the lowest positive integer solution]


【Solution】

This problem is a system of indeterminate equations with infinitely many solutions. According to the problem, we get


%5Cbegin%7Balign%7D%0A%20N%20%26%5Cequiv%202%20%5Cpmod%7B3%7D%20%5C%5C%0A%20N%20%26%5Cequiv%203%20%5Cpmod%7B5%7D%20%5C%5C%0A%20N%20%26%5Cequiv%202%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D

Calculate the product of the moduli

M%20%3D%203%20%5Ctimes%205%20%5Ctimes%207%20%3D%20105

The solution of the Chinese remainder theorem prescribes that

N%20%3D%20%5Cleft%5Br_1%20M_1%20s_1%20%2B%20r_2%20M_2%20s_2%20%2B%20r_3%20M_3%20s_3%20%5Cright%5D%20%5Cpmod%20M

For this problem

M_1%20%3D%20%5Cfrac%7B105%7D%7B3%7D%20%3D%2035%2C%20%5Cquad%20M_2%20%3D%20%5Cfrac%7B105%7D%7B5%7D%20%3D%2021%2C%20%5Cquad%20M_3%20%3D%20%5Cfrac%7B105%7D%7B7%7D%20%3D%2015


N%20%3D%20%5Cleft%5B2(35)s_1%20%2B%203(21)s_2%20%2B%202(15)s_3%20%5Cright%5D%20%5Cpmod%7B105%7D

where

%5Cbegin%7Balign%7D%0A%2035s_1%20%26%5Cequiv%201%20%5Cpmod%7B3%7D%20%5C%5C%0A%2021s_2%20%26%5Cequiv%201%20%5Cpmod%7B5%7D%20%5C%5C%0A%2015s_3%20%26%5Cequiv%201%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D


and?s_1%2C%20s_2%2C%20s_3 represent the modular inverses of each respective remainder.? The modular inverses can be solved systematically using Qin Jiushao's (大衍求一術(shù)) ; however, the numbers involved in this problem are small enough to be obtained by guessing and checking.


%5Cbegin%7Balign%7D%0A%2035(2)%20%26%5Cequiv%201%20%5Cpmod%7B3%7D%20%5C%5C%0A%2021(1)%20%26%5Cequiv%201%20%5Cpmod%7B5%7D%20%5C%5C%0A%2015(1)%20%26%5Cequiv%201%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D

Final Calculation

N%20%3D%20%5Cleft%5B2(35)(2)%20%2B%203(21)(1)%20%2B%202(15)(1)%20%5Cright%5D%20%5Cpmod%7B105%7D

N%20%5Cequiv%20%5Cleft%5B140%20%2B%2063%20%2B%2030%20%5Cright%5D%20%5Cpmod%7B105%7D

N%20%3D%20233%20%5Cpmod%7B105%7D

Here, 233 is a solution, but this is not the lowest positive integer solution. The lowest positive integer solution is


233%20-%202(105)%20%3D%2023

So there are 23 objects.


[Number Theory] Objects of Unknown Number的評論 (共 條)

分享到微博請遵守國家法律
民县| 榆林市| 宿迁市| 类乌齐县| 武乡县| 论坛| 靖州| 银川市| 邮箱| 奇台县| 阿图什市| 嘉黎县| 德庆县| 合山市| 安乡县| 涟源市| 安陆市| 旌德县| 定南县| 桂阳县| 铜陵市| 洛宁县| 朝阳县| 论坛| 奉贤区| 政和县| 井冈山市| 孝昌县| 灯塔市| 定安县| 宁远县| 新龙县| 丽水市| 大庆市| 临漳县| 荆门市| 延津县| 静宁县| 沭阳县| 逊克县| 清苑县|