TED 精彩演講 |如何利用森林和真菌之間古老的伙伴關(guān)系

So we know forests play an essential role in regulating the Earth's climate.?However, most of what we know about those forests?is actually based on things we can measure aboveground.?So historically, ecologists like myself would come to this place,?and we’d count the number of tree stems we’d find.?We’d identify which species they are,?and today we’d probably remotely sense features of this forest canopy from space.?And all of this absolutely makes sense.?Aboveground is where photosynthesis happens.?Photosynthesis is how carbon and energy enter forests.?Photosynthesis is how trees can remove carbon dioxide?from the atmosphere.
所以我們知道森林在調(diào)節(jié)地球氣候方面發(fā)揮著重要作用。?然而,我們對這些森林的大部分了解?實(shí)際上是基于我們可以在地面上測量的東西。?所以從歷史上看,像我這樣的生態(tài)學(xué)家會來這個(gè)地方,?我們會數(shù)一數(shù)我們找到的樹干的數(shù)量。?我們會確定它們是哪個(gè)物種,?今天我們可能會從太空遙感這片森林樹冠的特征。?而這一切絕對是有道理的。?地上是光合作用發(fā)生的地方。?光合作用是碳和能量進(jìn)入森林的方式。?光合作用是樹木從大氣中去除二氧化碳的方式。
However, we also know most trees are limited in some way,?by soil resources like water or nutrients.?And to access those resources, trees have to build roots.?And trees build an incredible amount of roots.?So in some forests, there can be as much or more biomass belowground,?in root structures,?as aboveground, in stems and leaves.?Decades of research have now made very clear?that belowground ecology --?so what’s going on in the soil -- is really essential to understanding?how these forest systems work.
然而,我們也知道大多數(shù)樹木在某種程度上?受到水或養(yǎng)分等土壤資源的限制。?為了獲取這些資源,樹木必須生根。?樹木會長出數(shù)量驚人的根。?因此,在某些森林中,地下?的根結(jié)構(gòu)中的生物量可能?與地上的莖和葉中的生物量一樣多或更多。?數(shù)十年的研究現(xiàn)在已經(jīng)非常清楚地表明?,地下生態(tài)學(xué)——?也就是土壤中發(fā)生的事情——對于理解?這些森林系統(tǒng)的運(yùn)作方式確實(shí)至關(guān)重要。
However, if you follow these root systems all the way out to their terminal ends,?the finest tips in the root system,?and you look closely -- I mean super closely,?like, you’re going to need a microscope closely --?you discover a place where the tree stops being a plant,?and starts becoming a fungus.?So most trees on Earth form a partnership,?or what scientists call symbiosis,?with mycorrhizal fungi.
然而,如果你一直追蹤這些根系直到它們的末端,?根系中最好的尖端,?然后你仔細(xì)觀察——我的意思是非常仔細(xì),?就像,你需要一個(gè)顯微鏡來仔細(xì)觀察——?你找到一個(gè)地方,那里的樹不再是植物,而是?開始變成真菌。?因此,地球上的大多數(shù)樹木都與菌根真菌結(jié)成伙伴關(guān)系,?或者科學(xué)家稱之為共生關(guān)系。
So this, in my opinion,?is one of the most remarkable images ever captured of these organisms.?So in the background, at the top,?you can see this dense network of fungal hyphae.?These are essentially like roots, but for fungi, instead of plants.?And in the foreground,?you can see these incredible, multinucleated fungal spores,?which look totally unreal, but absolutely are.?These are the reproductive structures of the fungus.?These have the potential to become entirely new fungal networks.
因此,在我看來,這?是有史以來拍攝到的這些生物最引人注目的圖像之一。?所以在背景的頂部,?你可以看到這個(gè)密集的真菌菌絲網(wǎng)絡(luò)。?這些基本上像根,但對于真菌,而不是植物。?在前景中,?您可以看到這些令人難以置信的多核真菌孢子,?它們看起來完全不真實(shí),但絕對是真實(shí)的。?這些是真菌的繁殖結(jié)構(gòu)。?這些有可能成為全新的真菌網(wǎng)絡(luò)。
Mycorrhizal fungi are essential?to how basically all plants access limiting soil resources.?There's actually evidence?that when plants first made the evolutionary transition?from living in water to living on land,?they evolved this symbiosis before they even evolved roots.?And so this partnership between forests and their fungi is ancient,?and it stretches back hundreds of millions of years.
菌根真菌對于?基本上所有植物如何獲取有限的土壤資源至關(guān)重要。?實(shí)際上有證據(jù)表明?,當(dāng)植物首次?從水中生活到陸地上的進(jìn)化過渡時(shí),?它們甚至在進(jìn)化出根之前就已經(jīng)形成了這種共生關(guān)系。?因此,森林與其真菌之間的這種伙伴關(guān)系由來已久,?可以追溯到數(shù)億年前。
However, these roots don't have to be just fungi.?They can also be, for instance, bacteria.?So these circular structures in this root network?are called root nodules.?They house symbiotic, nitrogen-fixing bacteria.?And what these bacteria do?is actually convert nitrogen gas in the atmosphere?into plant-usable forms,?and in turn, they nurture plant growth.
然而,這些根不一定只是真菌。?例如,它們也可以是細(xì)菌。?所以這個(gè)根網(wǎng)絡(luò)中的這些圓形結(jié)構(gòu)?被稱為根結(jié)節(jié)。?它們?nèi)菁{共生的固氮細(xì)菌。?這些細(xì)菌所做?的實(shí)際上是將大氣中的氮?dú)?轉(zhuǎn)化為植物可用的形式,?進(jìn)而培育植物生長。
And the complexity of soil biology just keeps going.?So these root symbionts are embedded in an even more complex network?of free-living bacterial and fungal decomposers,?and archaea and protists,?microscopic soil animals, viruses ...?The biodiversity of soil communities is astonishing.?We now know a handful of soil?can easily contain over 1,000 coexisting microbial species.
土壤生物學(xué)的復(fù)雜性還在不斷發(fā)展。?因此,這些根系共生體嵌入了一個(gè)更為復(fù)雜的網(wǎng)絡(luò)中,該網(wǎng)絡(luò)?由自由生活的細(xì)菌和真菌分解者、?古生菌和原生生物、?微觀土壤動(dòng)物、病毒組成……?土壤群落的生物多樣性令人震驚。?我們現(xiàn)在知道,一小撮土壤?很容易包含 1,000 多種共存微生物。
And so all of this, this is the soil microbiome.?This is the forest microbiome, this is the ecosystem microbiome.?So breakthroughs in DNA sequencing technology?have finally turned the lights on belowground.?DNA has allowed us to see these microbial communities?in unprecedented detail,?and, only recently, at unprecedented scales.
所有這一切,這就是土壤微生物組。?這是森林微生物組,這是生態(tài)系統(tǒng)微生物組。?因此,DNA 測序技術(shù)?的突破終于讓地下的燈亮了起來。?DNA 使我們能夠?前所未有地詳細(xì)了解這些微生物群落,?而且直到最近,我們才以前所未有的規(guī)模了解這些微生物群落。
Yet despite these breakthroughs,?I'd argue we still don't know the answers to seemingly simple questions, like this:?"What does a healthy forest microbiome look like?"?We're far closer to answering a question like this for people?than we are for plants.?The Human Microbiome Project has really led in this area.?So the human body is a microbial ecosystem.?Each of us houses an incredibly biodiverse community of bacteria in our gut,?and that has a profound impact on our health.?This was discovered by medical microbiologists?using DNA sequencing to characterize which bacteria?live in hundreds of people's bodies.?And importantly, also noting health features of those same people.?So, are they sick? And if so, with what??What's their blood pressure, their digestive health,?their mental health??And by combining all of that information,?those microbiologists could begin to identify?combinations of bacteria linked to health and disease.?And these analyses became a road map?for the development of human microbiome transplant therapies,?which is essentially ecosystem restoration,?but for your gut microbiome.?And these therapies are now on the road to market?to treat some of these diseases today.
然而,盡管取得了這些突破,?我認(rèn)為我們?nèi)匀徊恢揽此坪唵螁栴}的答案,例如:?“健康的森林微生物群是什么樣的?”?與植物相比,我們更接近于為人類回答這樣的問題。?人類微生物組計(jì)劃在這一領(lǐng)域確實(shí)處于領(lǐng)先地位。所以人體是一個(gè)微生物生態(tài)系統(tǒng)。我們每個(gè)人的腸道內(nèi)都有一個(gè)生物多樣性極其豐富的細(xì)菌群落,這對我們的健康有著深遠(yuǎn)的影響。這是醫(yī)學(xué)微生物學(xué)家發(fā)現(xiàn)的,他們使用 DNA 測序來表征數(shù)百人體內(nèi)存在的細(xì)菌。重要的是,還要注意這些人的健康特征。?那么,他們生病了嗎?如果是這樣,用什么??他們的血壓、消化系統(tǒng)健康狀況、?心理健康狀況如何??通過結(jié)合所有這些信息,?這些微生物學(xué)家可以開始識別?與健康和疾病相關(guān)的細(xì)菌組合。?這些分析成為?開發(fā)人類微生物組移植療法的路線圖,?這本質(zhì)上是生態(tài)系統(tǒng)恢復(fù),?但針對的是腸道微生物組。?這些療法現(xiàn)在正在走向市場?,以治療當(dāng)今的一些疾病。
And so drawing from this work, my team asked,?"What would it look like?to take the Human Microbiome Project approach,?but apply it to the forest?”?What could we discover about the forest carbon cycle??Could we identify places?where we could actually do belowground microbial restoration,?and, in the process, combat climate change?
因此,根據(jù)這項(xiàng)工作,我的團(tuán)隊(duì)問道: “如果?將人類微生物組計(jì)劃的方法應(yīng)用于森林,會是什么樣子?”?關(guān)于森林碳循環(huán),我們能發(fā)現(xiàn)什么?我們能否確定我們可以實(shí)際進(jìn)行地下微生物恢復(fù)的地方,并在此過程中應(yīng)對氣候變化?
Over the past three years,?we’ve been working with forest scientists across Europe?to do exactly that.?In each of these locations,?scientists have been documenting forest health for decades.?And so, we asked our forest research partners?to go out to each of these forests?and collect a small sample of soil,?which they then shipped back to our lab in Zurich?so we could extract and sequence DNA,?which allowed us to understand which microorganisms,?and particularly fungi,?live in each of these forests.?And then finally, we used statistics and machine learning?to relate which microorganisms live in a forest?to a really important forest health metric:?tree growth rate?and carbon-capture rate aboveground.
在過去的三年里,?我們一直在與歐洲各地的森林科學(xué)家合作?來做到這一點(diǎn)。?數(shù)十年來,科學(xué)家們一直在記錄其中每個(gè)地點(diǎn)的森林健康狀況。?因此,我們要求我們的森林研究合作伙伴前往這些森林中的每一個(gè)并收集一小部分土壤樣本,然后他們將其運(yùn)回我們在蘇黎世的實(shí)驗(yàn)室,以便我們提取和測序 DNA,這使我們能夠了解哪些微生物,尤其是真菌,生活在這些森林中。最后,我們使用統(tǒng)計(jì)數(shù)據(jù)和機(jī)器學(xué)習(xí)將森林中的哪些微生物與真正重要的森林健康指標(biāo)聯(lián)系起來:?地上樹木生長率?和碳捕獲率。
Now, once we controlled for the environmental drivers of tree growth --?so how warm and wet each of these places is,?as well as other variables we know control background site fertility --?we discovered that particularly which fungi colonize?the roots of these trees?is linked to threefold variation in how fast these trees grow,?how fast they remove carbon dioxide from the atmosphere.?So put another way,?these correlations imply that you could have two pine forests,?sitting side by side,?experiencing the same climate, growing in the same soils.?But if one of them was colonized?by the right community of fungi on its roots,?it could be growing up to three times as fast as that adjacent forest.?And furthermore, these patterns were not driven?by the presence of particularly high-performing species or strains,?but instead, they were driven by biodiverse and completely different?communities of fungi.
現(xiàn)在,一旦我們控制了樹木生長的環(huán)境驅(qū)動(dòng)因素——?每個(gè)地方的溫暖和潮濕程度,?以及我們知道的其他控制背景場地肥力的變量——?我們發(fā)現(xiàn),特別是哪些真菌在?這些樹的根部繁殖與這些樹木生長?速度、它們從大氣中清除二氧化碳的速度的三倍變化有關(guān)。?所以換句話說,這些相關(guān)性意味著你可以有兩片松樹林,并排坐著,經(jīng)歷相同的氣候,生長在相同的土壤中。但如果其中一個(gè)被正確的真菌群落定殖在它的根部,?它的生長速度可能是鄰近森林的三倍。?此外,這些模式并不是?由特別高性能的物種或菌株的存在驅(qū)動(dòng)的,?而是由生物多樣性和完全不同?的真菌群落驅(qū)動(dòng)的。
And so these fungal signatures are super exciting to us?because they imply an opportunity to manage,?and in many cases, actually rewild the forest fungal microbiome.
因此,這些真菌特征對我們來說非常令人興奮,?因?yàn)樗鼈円馕吨芾淼臋C(jī)會,?在許多情況下,實(shí)際上是重新野生森林真菌微生物組。
So, for example, can we reintroduce fungal biodiversity?into a managed timber forestry landscape??And in the process, can we make those trees grow faster??Can we make them capture more carbon in their tree stems and in their soils??Can we rewild the soil and combat climate change??And these aren't just rhetorical questions --?we've actually started doing this.
那么,例如,我們能否將真菌生物多樣性重新引入?受管理的用材林景觀中??在這個(gè)過程中,我們能讓那些樹長得更快嗎??我們能讓它們在樹干和土壤中捕獲更多的碳嗎??我們能否重建土壤并應(yīng)對氣候變化??這些不僅僅是修辭問題——?我們實(shí)際上已經(jīng)開始這樣做了。
So this is one of our field trials in Wales, in the United Kingdom.?It’s run in collaboration with the charity there?called the Carbon Community.?It’s 28 acres, or 11 hectares,?and it's set up as a block-randomized controlled trial.?This is analogous to how you would run a drug trial,?but in this case, it's for trees instead of people.?And here, we do a pretty straightforward experiment.?We either plant trees, business as usual --?which is just direct planting of seedlings into the ground --?or we plant trees, and at the moment of planting,?we add a small handful of soil.?But it's not just any soil.?It's soil sourced from a forest?our analyses have identified as harboring potentially high-performing fungi.?So since we reintroduced microbial biodiversity?into some of these sites,?we've observed that where we actually did that,?we've been able to accelerate tree growth and carbon capture in tree stems?by 30 to 70 percent, depending on the tree species.?Or put another way --?where we manipulated and rewilded the invisible microbiology of this place,?we’ve begun to change how that entire place works.
這是我們在英國威爾士進(jìn)行的實(shí)地試驗(yàn)之一。?它與當(dāng)?shù)孛麨?Carbon Community的慈善機(jī)構(gòu)合作運(yùn)營。?它占地 28 英畝或 11 公頃,它被設(shè)置為一個(gè)塊隨機(jī)對照試驗(yàn)。這類似于你將如何進(jìn)行藥物試驗(yàn),但在這種情況下,它是針對樹木而不是人。在這里,我們做了一個(gè)非常簡單的實(shí)驗(yàn)。我們要么像往常一樣種樹——這只是將幼苗直接種到地里——要么我們種樹,在種植的時(shí)候,我們加了一小把土壤。但這不僅僅是任何土壤。這是來自森林的土壤?我們的分析已確定其中藏有潛在的高性能真菌。?因此,自從我們將微生物生物多樣性重新引入?其中一些地點(diǎn)以來,?我們觀察到,在我們實(shí)際這樣做的地方,?我們已經(jīng)能夠?qū)淠旧L和樹干中的碳捕獲加速?30% 到 70%,具體取決于樹種。?或者換句話說——?我們操縱和重新野化了這個(gè)地方的無形微生物,?我們已經(jīng)開始改變整個(gè)地方的運(yùn)作方式。
Now it's important to emphasize?that we're really excited about these findings,?but we also understand they're still early.?We want to see many more large-scale field trials?and many more locations with many more years of data.
現(xiàn)在需要強(qiáng)調(diào)的?是,我們對這些發(fā)現(xiàn)感到非常興奮,?但我們也知道它們還為時(shí)過早。?我們希望看到更多的大規(guī)模現(xiàn)場試驗(yàn)?和更多的地點(diǎn)以及更多年的數(shù)據(jù)。
However, beyond just these carbon and climate outcomes,?I think the most exciting thing here?is that we can actually do this with wild and native and biodiverse?combinations of microorganisms.?And while we pointed this approach at forestry,?in principle, this kind of science has the potential to generalize?to all of our managed landscapes.?We can begin asking questions like,?"What does a healthy agricultural microbiome look like?"?Thinking across both food and forest agriculture.
然而,除了這些碳和氣候結(jié)果之外,?我認(rèn)為這里最令人興奮的事情?是我們實(shí)際上可以用野生和本地以及生物多樣性?的微生物組合來做到這一點(diǎn)。?雖然我們在原則上將這種方法指向林業(yè),?但這種科學(xué)有可能推廣?到我們所有管理的景觀。?我們可以開始問這樣的問題,?“健康的農(nóng)業(yè)微生物群是什么樣子的?”?思考糧食和林業(yè)農(nóng)業(yè)。
And there's reason to think a biodiversity-first approach?may be particularly powerful here.?And that’s because the history of agriculture?has been an exercise in reductionism.?We've identified high-performing plant species,?and then strains,?and then we’ve selectively bred them,?and now we genetically modify them.?And finally, we plant those organisms out in vast monocultures.?So a single plant species as far as you can see.?And to be clear,?this has produced very productive agroecosystems.?But it's also produced ecosystems?we’re coming to understand are remarkably fragile.?Systems increasingly sensitive to extreme climate events,?novel pathogens.?Systems incredibly reliant on chemical inputs,?we're coming to understand have really serious externalities.
并且有理由認(rèn)為生物多樣性優(yōu)先的方法?在這里可能特別有效。?那是因?yàn)檗r(nóng)業(yè)的歷史?一直是還原論的實(shí)踐。?我們已經(jīng)確定了高性能植物物種,?然后是品系,?然后我們選擇性地培育它們,?現(xiàn)在我們對它們進(jìn)行基因改造。?最后,我們將這些生物種植在廣闊的單一栽培中。?因此,就您所見而言,只有一種植物。?需要明確的是,?這產(chǎn)生了非常多產(chǎn)的農(nóng)業(yè)生態(tài)系統(tǒng)。?但它也產(chǎn)生了?我們逐漸了解的生態(tài)系統(tǒng)非常脆弱。?系統(tǒng)對極端氣候事件、?新型病原體越來越敏感。?非常依賴化學(xué)輸入的系統(tǒng),?我們開始明白具有非常嚴(yán)重的外部性。
So we now have the data, computational tools?and the ecological theory to start going the other way,?to lean into biodiversity and complexity.?And once we do, the question really becomes,?by rewilding our soils,?can we make our managed food and forest landscapes?reservoirs of belowground biodiversity??And in the process,?can we enhance yields and carbon capture?and all the other services we ask of these ecosystems?
因此,我們現(xiàn)在有了數(shù)據(jù)、計(jì)算工具?和生態(tài)理論,可以開始另辟蹊徑,研究?生物多樣性和復(fù)雜性。?一旦我們這樣做了,問題就真的變成了,?通過重建我們的土壤,?我們能否使我們管理的食物和森林景觀?成為地下生物多樣性的水庫??在這個(gè)過程中,?我們能否提高產(chǎn)量和碳捕獲?以及我們要求這些生態(tài)系統(tǒng)提供的所有其他服務(wù)?
I think there's a lot of reason to be incredibly hopeful here.?And I think we also shouldn't be so surprised?that these microscopic organisms have the potential?for such enormous, ecosystem-scale effects.?And that’s because we’ve known now, really for a long time,?that forests are fungi.?And they’re incredibly biodiverse communities of bacteria and archaea?and protists and microscopic soil animals and viruses.?Soil is the literal foundation of terrestrial ecosystems,?and the microbial life that inhabits soil?represents some of the most complex and biodiverse?communities of life on Earth.
我認(rèn)為有很多理由在這里充滿希望。?而且我認(rèn)為我們也不應(yīng)該對?這些微觀生物具有?如此巨大的生態(tài)系統(tǒng)規(guī)模影響的潛力感到驚訝。?那是因?yàn)槲覀冊缇椭?森林是真菌。?它們是細(xì)菌、古細(xì)菌?、原生生物、微觀土壤動(dòng)物和病毒的令人難以置信的生物多樣性群落。?土壤是陸地生態(tài)系統(tǒng)的真正基礎(chǔ)?,棲息在土壤中的微生物?代表了地球上一些最復(fù)雜和生物多樣性?的生命群落。
For the first time,?DNA sequencing is turning the lights on belowground.?It’s allowing us to see these organisms in unprecedented detail?and at unprecedented scales.?Imagine studying plant biology,?but you never really knew if you're looking at a sequoia tree?or a sphagnum moss.?And then, all of a sudden, you did.?That's what's happening right now in global environmental microbiology.?And so we should expect this revolution?in our understanding of these microscopic organisms,?and particularly fungi,?to transform how we understand and how we manage our ecosystems?in a foundational way.
我認(rèn)為有很多理由在這里充滿希望。?而且我認(rèn)為我們也不應(yīng)該對?這些微觀生物具有?如此巨大的生態(tài)系統(tǒng)規(guī)模影響的潛力感到驚訝。?那是因?yàn)槲覀冊缇椭?森林是真菌。?它們是細(xì)菌、古細(xì)菌?、原生生物、微觀土壤動(dòng)物和病毒的令人難以置信的生物多樣性群落。?土壤是陸地生態(tài)系統(tǒng)的真正基礎(chǔ)?,棲息在土壤中的微生物?代表了地球上一些最復(fù)雜和生物多樣性?的生命群落。