【拉普拉斯變換】這樣理解才直觀

拉普拉斯變換,傅立葉變換升級版
傅立葉變換問題:很強(qiáng)大,可解微分方程

進(jìn)行傅立葉變換

進(jìn)行求解。
傅立葉變換問題:
1適用范圍

2針對衰減,真實(shí)現(xiàn)象有阻尼

傅立葉變換:

從傅立葉變換->拉普拉斯變換
首先f(t)×y(t),y(t)是衰減因子,然后再×上階躍函數(shù),現(xiàn)在的傅立葉變換就變?yōu)槿缦聢D所示,進(jìn)行了推廣。



拉普拉斯變換是傅立葉變換一般變換形式
對于求解偏微分方程、常微分方程都是很有用的,沒有那么多嚴(yán)格限制。
標(biāo)簽: