最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【公開課】數(shù)字信號分析理論與實(shí)踐(基于matlab) - 華中科技大學(xué)(數(shù)字信

2022-11-05 12:12 作者:perny  | 我要投稿

課程中的matlib版本較低,很多函數(shù)發(fā)生了變化。在這里補(bǔ)充一下課程中的實(shí)例程序。

使用到的控件:按鈕、編輯字段(數(shù)值)、滑塊、坐標(biāo)區(qū)。

需要注意的是:最后老師演示的實(shí)例,滑動滑塊后自動顯示了波形,這是因?yàn)槔蠋煂⒊绦蛱砑釉诹嘶瑝K的回調(diào)函數(shù)中。所使用的程序不需要額外改變。


%在標(biāo)尺中可以設(shè)置坐標(biāo)軸的范圍來實(shí)現(xiàn)對整體信號的截取,程序中整個聲音時長為1s,通過坐標(biāo)軸范圍來顯示0.01s中的波形

% 生成音頻文件需要為全局變量,通過使用global關(guān)鍵詞來設(shè)置

??????global player;

??????F=app.Slider.Value;

??????Fs=44100;

??????dt=1.0/Fs;

??????T=1;

??????N=T/dt;

??????t=linspace(0,T,N);

??????x=0.3*sin(2*pi*F*t);

??????plot(app.UIAxes,t,x);

??????app.EditField.Value = F;

??????player = audioplayer(x,Fs);%生成音頻文件

??????play(player);%播放音頻文件


P16 作業(yè)-----------------------------------------------

%用11025Hz的采樣頻率,用Matlab生成時間長度為1s的500Hz的正弦波

%方波等標(biāo)準(zhǔn)信號,并用plot函數(shù)繪制信號波形,用sound函數(shù)播放信號聲音

Fs=11025;

dt=1.0/Fs;

T=1;

N=T/dt;

t=(0:N-1)/N;

%正弦波

%x=0.3*sin(2*pi*500*t);

%方波

%x=0.3*square(2*pi*500*t);

%鋸齒波

%x=0.3*sawtooth(2*pi*500*t,1/2);

%白噪聲

%x=0.3*randn(1,N);

plot(t,x);

axis([0,0.01,-0.5,0.5]);

player = audioplayer(x,Fs);%生成音頻文件

play(player);%播放音頻文件


P19 電子琴加泛音-----------------------------------

只以1號鍵為例

global player

??????A=linspace(0,0.9,8800);

??????D=linspace(0.9,0.8,2200);

??????S=linspace(0.8,0.8,18000);

??????R=linspace(0.8,0,15100);

??????global adsr

??????adsr=[A,D,S,R];

??????Fs= 44100;

??????dt=1.0/Fs;

??????T=1;

??????N=T/dt;

??????t=linspace(0,T,N);

??????x=0.3*sin(2*pi*247*t);

??????y=x.*adsr;

??????plot(app.UIAxes,t,y);

??????player = audioplayer(y,Fs);

??????play(player);


項(xiàng)目1:數(shù)字信號發(fā)生器

效果圖:?

回調(diào)函數(shù)列表:

?控件列表:

代碼如下:

??properties (Access = private)%私有屬性

????Timer_id;

????type;

??end

???

??methods (Access = private)%私有函數(shù)

?????

????function my_callback_fcn(app)

??????global Fs

??????global x

??????global N

??????global F

??????global A

??????global z

??????Fs = 44100;

??????dt=1.0/Fs;

??????T=1;

??????N=T/dt;

??????t=linspace(0,T,N);

??????F=app.FreSlider.Value;

??????A=app.AmpSlider.Value;

??????if app.type==1

????????x=0.5*A*randn(1,N);

??????end

??????if app.type==2

????????x=A*sin(2*pi*F*t+z);

??????end

??????if app.type==3

????????x=A*square(2*pi*F*t+z);

??????end

??????if app.type==4

????????x=A*sawtooth(2*pi*F*t+z);

??????end

??????z=z+0.25;

??????plot(app.UIAxes,t,x);

??????grid(app.UIAxes);

???????

????end

????%定時器初始化,重復(fù)模式

????function timer_init(app)

??????app.Timer_id=timer;

??????app.Timer_id.Period=1.0; %周期

??????app.Timer_id.ExecutionMode='fixedRate';

??????app.Timer_id.TasksToExecute=Inf;

??????app.Timer_id.TimerFcn=@(~,~) my_callback_fcn(app);

????end

????%定時器啟動

????function timer_start(app)

??????start(app.Timer_id);

????end

????%定時停止

????function timer_stop(app)

??????stop(app.Timer_id);

????end

????%刪除定時器

????function timer_delete(app)

??????delete(app.Timer_id);

????end

??end

???


??% Callbacks that handle component events

??methods (Access = private)


????% Value changed function: FreSlider

????function FreSliderValueChanged(app, event)

??????app.EditFreEditField.Value=event.Value;??????

????end


????% Value changed function: AmpSlider

????function AmpSliderValueChanged(app, event)

??????app.EditAmpEditField.Value=event.Value;???????

????end


????% Value changed function: EditFreEditField

????function EditFreEditFieldValueChanged(app, event)

??????app.FreSlider.Value=event.Value;??????

????end


????% Value changed function: EditAmpEditField

????function EditAmpEditFieldValueChanged(app, event)

??????app.AmpSlider.Value=event.Value;?????

????end


????% Button pushed function: PlayButton

????function PlayButtonPushed(app, event)

??????global player

??????global Fs

??????global x

??????y=x*0.01;

??????player=audioplayer(y,Fs);

??????play(player);

????end


????% Button pushed function: NoiseButton

????function NoiseButtonPushed(app, event)

??????app.type=1;

??????my_callback_fcn(app);

????end


????% Button pushed function: SineButton

????function SineButtonPushed(app, event)

??????app.type=2;

??????my_callback_fcn(app);

????end


????% Button pushed function: SquareButton

????function SquareButtonPushed(app, event)

??????app.type=3;

??????my_callback_fcn(app);

????end


????% Button pushed function: TrangleButton

????function TrangleButtonPushed(app, event)

??????app.type=4;

??????my_callback_fcn(app);

????end


????% Button pushed function: RunButton

????function RunButtonPushed(app, event)

??????timer_init(app);

??????timer_start(app);

????end


????% Button pushed function: StopButton

????function StopButtonPushed(app, event)

??????ts=timerfind;

??????if ~isempty(ts)

????????timer_stop(app);

????????timer_delete(app);

??????end?????

????end

??end


P24- 作業(yè)----------------------------------------------

本人將兩個作業(yè)合并為一個。

效果圖:

所使用到的控件:

程序代碼如下:

???

??properties (Access = private)

????x % Description

????dt

????N

????t

????Fs=5120;

????type_num=1;

??end

???

??methods (Access = private)

?????

????function wave_sin(app)

??????pinlv=app.Slider.Value;

??????fuzhi=app.Slider_2.Value;

??????app.dt=1.0/app.Fs;

??????T=1;

??????app.N=T/app.dt;

??????app.t=(0:app.N-1)/app.N*T;

??????app.x=fuzhi*sin(2*pi*pinlv*app.t);

??????jisuan(app);

????end??

?????

????function daoshu(app)%對信號先微分再積分

??????y1=app.x;

??????y1(1)=app.x(1);

??????for k=2:1:app.N-1

????????y1(k)=(app.x(k+1) - app.x(k-1))/(2*app.dt);

??????end

??????y1(app.N)=app.x(app.N);

??????plot(app.UIAxes2,app.t,y1);

??????y2=y1;

??????y2(1)=0;

??????for k=2:1:app.N-1

????????y2(k)=y2(k-1) + (app.dt*(y1(k)+y1(k-1)))/2;

??????end

??????plot(app.UIAxes3,app.t,y2);

????end

?????

????function jisuan(app)

???????%分析幅值

??????fz=max(app.x);

??????app.EditField.Value=fz;

??????%分析峰峰值

??????ffz=max(app.x)-min(app.x);

??????app.EditField_2.Value=ffz;

??????%分析平均值

??????pjz=mean(app.x);

??????app.EditField_3.Value=pjz;

??????%分析有效值

??????cz=app.x-pjz;%波形數(shù)組每一個元素與平均值的差值

??????czpf=cz.^2;%差值平方

??????czpfpj=sum(czpf)/app.N;%差值平方求和取平均

??????yxz=sqrt(czpfpj);%開方求得有效值

??????app.EditField_5.Value=yxz;

??????%標(biāo)準(zhǔn)差

??????app.EditField_6.Value=std(app.x);

??????%頻率和初始相位

??????p=max(app.x);q=min(app.x);n=1;ti=(0);

??????at=0.8*(p-q)+q;

??????for k=2:1:app.N-1

????????if(app.x(k-1)<at && app.x(k)<=at && app.x(k+1)>at && app.x(k+2)>at)

??????????ti(n) = k;

??????????n = n+1;

????????end

??????end

??????T=((ti(2) - ti(1)))*app.dt;

??????F=1.0/T;

??????Q=(T-ti(1)*app.dt);%計(jì)算出初始相位

??????app.EditField_9.Value=Q;

??????app.EditField_4.Value=F;

??????plot(app.UIAxes,app.t,app.x);??????

????end

?????

????function wave_square(app)

??????pinlv=app.Slider.Value;

??????fuzhi=app.Slider_2.Value;

??????app.dt=1.0/app.Fs;

??????T=1;

??????app.N=T/app.dt;

??????app.t=(0:app.N-1)/app.N*T;

??????app.x=fuzhi*square(2*pi*pinlv*app.t);

??????jisuan(app);

????end

?????

????function wave_sawtooth(app)

??????pinlv=app.Slider.Value;

??????fuzhi=app.Slider_2.Value;

??????app.dt=1.0/app.Fs;

??????T=1;

??????app.N=T/app.dt;

??????app.t=(0:app.N-1)/app.N*T;

??????app.x=fuzhi*sawtooth(2*pi*pinlv*app.t);

??????jisuan(app);????

????end

?????

????function select(app)

??????switch (app.type_num)

????????case 1

??????????try??????

????????????wave_sin(app);

????????????daoshu(app);

??????????catch ErrorInfo

????????????warndlg('數(shù)據(jù)輸入有誤?。?#39;);

??????????end

????????case 2

??????????try????????????

????????????wave_square(app);

????????????daoshu(app);

??????????catch ErrorInfo

????????????warndlg('數(shù)據(jù)輸入有誤??!');

??????????end

????????case 3

??????????try

????????????wave_sawtooth(app);

????????????daoshu(app);

??????????catch ErrorInfo

????????????warndlg('數(shù)據(jù)輸入有誤??!');

??????????end

??????end

????end

??end


??% Callbacks that handle component events

??methods (Access = private)


????% Value changed function: Slider_2

????function Slider_2ValueChanged(app, event)

??????app.EditField_7.Value = app.Slider_2.Value;

??????select(app);

????end


????% Value changed function: EditField_7

????function EditField_7ValueChanged(app, event)

??????app.Slider_2.Value = app.EditField_7.Value;

??????select(app);

????end


????% Value changed function: Slider

????function SliderValueChanged(app, event)

??????app.EditField_8.Value = app.Slider.Value;

??????select(app);

????end


????% Value changed function: EditField_8

????function EditField_8ValueChanged(app, event)

??????app.Slider.Value = app.EditField_8.Value;

??????select(app);

????end


????% Button pushed function: Button

????function ButtonPushed(app, event)

??????try?

????????app.type_num=1;

????????wave_sin(app);

????????daoshu(app);

??????catch ErrorInfo

????????warndlg('數(shù)據(jù)輸入有誤?。?#39;);

??????end

????end


????% Button pushed function: Button_2

????function Button_2Pushed(app, event)

??????try?

????????app.type_num=2;

????????wave_square(app);

????????daoshu(app);

??????catch ErrorInfo

????????warndlg('數(shù)據(jù)輸入有誤??!');

??????end

????end


????% Button pushed function: Button_3

????function Button_3Pushed(app, event)

??????try?

????????app.type_num=3;

????????wave_sawtooth(app);

????????daoshu(app);

??????catch ErrorInfo

????????warndlg('數(shù)據(jù)輸入有誤?。?#39;);

??????end

????end

??end



P27---------------------------------------------------

Fs=5120;N=1024;

dt=1.0/Fs;T=dt*N;

t=linspace(0,T,N);

x=10*sin(2*pi*100*t)+10/3*sin(2*pi*3*100*t);

plot(t,x);

title('原始信號');


y=fft(x,N);


a=real(y);b=imag(y);

figure;%創(chuàng)建圖窗窗口

subplot(2,1,1);

plot(a);

title('實(shí)頻譜');

subplot(2,1,2);

plot(b);

title('虛頻譜');


f=linspace(0,Fs/2,N/2);%x坐標(biāo)換為頻率

A1=abs(y)/(N/2);%幅值量綱還原

Q1=angle(y)*180/pi;

figure;%創(chuàng)建圖窗窗口

subplot(2,1,1);

plot(f,A1(1:N/2));%不顯示負(fù)頻率部分

title('幅頻譜');

subplot(2,1,2);

plot(f,Q1(1:N/2));%不顯示負(fù)頻率部分

title('相頻譜');


A2=A1.^2;%功率譜

P2=20*log10(A2);%對數(shù)功率譜

figure;

subplot(2,1,1);

plot(f,A2(1:N/2));

title('功率譜');

subplot(2,1,2);

plot(f,P2(1:N/2));

title('對數(shù)功率譜');


P27 作業(yè)---------------------------------------------

Fs=11025;N=1024;

dt=1.0/Fs;T=dt*N;

t=linspace(0,T,N);

%正弦波

x=10*sin(2*pi*200*t);

y=fft(x,N);

f=linspace(0,Fs/2,N/2);%x坐標(biāo)換為頻率

A1=abs(y)/(N/2);%幅值量綱還原

subplot(2,1,1);

plot(t,x);

title('正弦波');

subplot(2,1,2);

plot(f,A1(1:N/2));%不顯示負(fù)頻率部分

title('幅頻譜');


%方波

x1=10*square(2*pi*200*t);

y1=fft(x1,N);

A2=abs(y1)/(N/2);%幅值量綱還原

figure;

subplot(2,1,1);

plot(t,x1);

title('方波');

subplot(2,1,2);

plot(f,A2(1:N/2));%不顯示負(fù)頻率部分

title('幅頻譜');


%三角波

x2=10*sawtooth(2*pi*200*t);

y2=fft(x2,N);

A3=abs(y2)/(N/2);%幅值量綱還原

figure;

subplot(2,1,1);

plot(t,x2);

title('三角波');

subplot(2,1,2);

plot(f,A3(1:N/2));%不顯示負(fù)頻率部分

title('幅頻譜');


P34------------------------------------------------------

【備注】:只是完成了課程中老師所提及到的功能,更多細(xì)節(jié)可以再優(yōu)化優(yōu)化,就讓各位讀者自行探索。

效果圖:

程序:

???

??properties (Access = private)

????Timer_id

????wave

????num=0;

????N=24810;?% 24810 = length(doubleArray)/2

????Z1=0.1;

????Z2=0.1;

??end

???

??methods (Access = private)

????%音頻處理

????function Recording(app)

??????recObj = audiorecorder(11025,16,1);

??????recordblocking(recObj,5);

??????doubleArray = getaudiodata(recObj);

??????doubleArray = doubleArray(5506:end);%去除錄音數(shù)據(jù)頭

??????ylim(app.UIAxes,[-app.Z1 app.Z1]);

??????plot(app.UIAxes,doubleArray);

??????switch app.num

????????case 0

??????????pinlv(app,doubleArray);

????????case 1

??????????%注意兩個數(shù)組的大小

??????????H=2*hamming(app.N*2).*doubleArray;%2為修正系數(shù)

??????????pinlv(app,H);

????????case 2

??????????B=2.381*blackman(app.N*2).*doubleArray;

??????????pinlv(app,B);

????????case 3

??????????P=4.545*flattopwin(app.N*2).*doubleArray;

??????????pinlv(app,P);

??????end

????end

?????

????%fft

????function pinlv(app,wave)??????

??????y_fft=fft(wave);

??????f=linspace(0,5505,app.N);

??????A=abs(y_fft)/app.N;

??????ylim(app.UIAxes2,[0 0.01*app.Z2]);

??????plot(app.UIAxes2,f,A(1:app.N));??????

????end

?????

????%定時器初始化,重復(fù)模式

????function timer_init(app)

??????app.Timer_id=timer;

??????app.Timer_id.Period=5.2; %周期

??????app.Timer_id.ExecutionMode='fixedRate';

??????app.Timer_id.TasksToExecute=Inf;

??????app.Timer_id.TimerFcn=@(~,~) Recording(app);

????end

?????

????%定時器啟動

????function timer_start(app)

??????start(app.Timer_id);

????end

?????

????%定時停止

????function timer_stop(app)

??????stop(app.Timer_id);

????end

?????

????%刪除定時器

????function timer_delete(app)

??????delete(app.Timer_id);

????end

??end

???


??% Callbacks that handle component events

??methods (Access = private)


????% Button pushed function: Button

????function ButtonPushed(app, event)

??????timer_init(app);

??????timer_start(app);

????end


????% Button pushed function: Button_2

????function Button_2Pushed(app, event)

??????timer_delete(app);

????end


????% Button pushed function: Button_3

????function Button_3Pushed(app, event)

??????app.num = 1;

????end


????% Button pushed function: Button_4

????function Button_4Pushed(app, event)

??????app.num = 2;

????end


????% Button pushed function: Button_5

????function Button_5Pushed(app, event)

??????app.num = 3;

????end


????% Value changed function: Slider

????function SliderValueChanged(app, event)

??????app.Z1 = 0.1*2*app.Slider.Value;???

????end


????% Value changed function: Slider_2

????function Slider_2ValueChanged(app, event)

??????app.Z2 = 0.1*2*app.Slider_2.Value;

????end

??end


P36 第五章-----------------------------------------

信號的時差域相關(guān)分析

信號的相關(guān)分析是一種分析兩個信號之間或一個信號自身的時間依存關(guān)系和相似程度的方法。

工程上,人們關(guān)心的是信號不同時刻的相似程度,但不太關(guān)心其具體值,這時相關(guān)函數(shù)可簡化為:

x=y 自相關(guān);x!=y 互相關(guān)

數(shù)字信號離散計(jì)算公式:


聲音素材網(wǎng)址:https://sc.chinaz.com/yinxiao/220314192200.htm

程序:

[y,Fs] = audioread('beat.wav');%讀取聲音文件,需要在同一文件夾下

y1=y(:,1);%取單聲道

subplot(2,1,1);

plot(y1);

s=xcorr(y1,'unbiased');%自相關(guān)函數(shù)

% ‘unbiased' 避免重疊失真

subplot(2,1,2);

plot(s);

結(jié)果:下圖中相關(guān)函數(shù)圖形,橫坐標(biāo)中點(diǎn)為零點(diǎn)。

相關(guān)函數(shù)的性質(zhì):

(1)自相關(guān)函數(shù)是偶函數(shù)

(2)當(dāng)t=0時,自相關(guān)函數(shù)具有最大值

(3)周期信號的自相關(guān)函數(shù)仍然是同頻率的周期信號,但不保留原信號的相位信息

(4)隨機(jī)噪聲信號的自相關(guān)函數(shù)將隨t的增大快速衰減

(5)兩周期信號的互相關(guān)函數(shù)仍然是同頻率的周期信號,且保留原有信號的相位信息

(6)兩個非同頻率的周期信號互不相關(guān)


P40----------------------------------------------------

在數(shù)學(xué)中,概率密度函數(shù)(Probability Density Function)是一個描述信號的取值在某個確定的取值點(diǎn)附近的可能性的函數(shù),定義為概率分布函數(shù)的倒數(shù)。

以幅值大小為橫坐標(biāo),以每個幅值間隔內(nèi)出現(xiàn)的概率為縱坐標(biāo)進(jìn)行統(tǒng)計(jì)分析的方法。它反映了信號落在不同幅值強(qiáng)度區(qū)域內(nèi)的概率情況。

概率分布函數(shù)

概率分布函數(shù)(Cumulative distribution function)是信號幅值小于或等于某值R的概率,其定義為:

概率分布函數(shù)又稱之為累積概率,表示了落在某一區(qū)間的概率。

直方圖

以幅值為橫坐標(biāo),以每個幅值間隔內(nèi)出現(xiàn)的頻次為縱坐標(biāo)進(jìn)行統(tǒng)計(jì)分析,稱為直方圖。

直方圖歸一化后可轉(zhuǎn)換為概率密度函數(shù)。


直方圖均衡,主要作用是提高圖像的清晰度和紋理的識別度,可能會使得色彩失真,更多的是用在灰度圖像的處理。

P42------------------------------------------------------

效果圖:

代碼:

function ButtonValueChanged(app, event)

??????[filename, filepath]=uigetfile({'*.bmp;*.jpg;*.png'},'選擇圖片文件'); %選擇文件

??????if isequal(filename,0) ||?isequal(filepath,0)%判斷是否選中圖片

????????errordlg('沒有選中文件,請重新選擇','出錯');

????????return;

??????else

?????????set(app.EditField,'Value',[filepath, filename]);%獲取文件的路徑和名字

??????end

??????road=get(app.EditField,'Value');

??????set(gcbf,'UserData',road);% GUI中參數(shù)的傳遞,詳情https://www.cnblogs.com/jmliao/p/5628521.html

????end


????% Value changed function: Button_2

????function Button_2ValueChanged(app, event)

?????road=get(gcbf,'UserData');

?????app.Image.ImageSource=road;%顯示原圖像

?????O_image=imread(road);%讀入原始圖像

?????Image_gray=im2gray(O_image);%轉(zhuǎn)換為灰度圖像

?????imwrite(Image_gray,'myGray.png');%將灰度圖像保存,圖像控件只能顯示真色彩圖像,暫未找到直接顯示灰度圖像的方法

?????app.Image_3.ImageSource='myGray.png';

?????Image_A_gray=histeq(Image_gray);%直方圖均衡強(qiáng)化對比度

?????imwrite(Image_A_gray,'myHisteq.png');

?????app.Image_4.ImageSource='myHisteq.png';

????end

P43------------------------------------------------

白噪聲信號的幅值域分析

效果圖:

程序:

x=-4:0.02:4;

y=randn(10000,1);

subplot(4,1,1);

plot(y);

[N, edges] = histcounts(y,x);%N-bin中的計(jì)數(shù),edges-bin的邊界

centers = (edges(1:end-1) + edges(2:end))./2;%取邊界中心值

subplot(4,1,2);stem(centers,N); %繪制離散序列數(shù)據(jù)

pdf=N/length(y);%歸一化,也可以直接使用示例程序中的方式進(jìn)行歸一化

subplot(4,1,3);plot(centers,pdf);

subplot(4,1,4);cdfplot(y);%累計(jì)分布函數(shù)圖像

補(bǔ)充:(可以參考一下,便于理解直方圖的參數(shù)和屬性)

示例程序(來源網(wǎng)絡(luò)):

x = randn(1,1000); %Generate some data to plot


figure(1); clf;

subplot(2,1,1); hold on;

h = histogram(x,'normalization','probability');

title('Plotted as a histogram');

ylabel('Frequency');


subplot(2,1,2); hold on;

[N, edges] = histcounts(x,'normalization','probability');

centers = (edges(1:end-1) + edges(2:end))./2; %histcounts gives the bin edges, but we want to plot the bin centers

plot(centers,N,'ko');

title('Plotted as points');

ylabel('Frequency');


自己畫的,便于理解:


直方圖,概率質(zhì)量函數(shù)和概率密度函數(shù)

https://blog.csdn.net/lovehua365/article/details/79058815

頻譜、能譜、功率譜、倍頻程譜、1/3 倍頻程譜

https://blog.csdn.net/liyuanbhu/article/details/42675765

2倍頻程、1倍頻程、1/3倍頻程介紹

https://blog.csdn.net/chenhuanqiangnihao/article/details/122079324

P46 信號的數(shù)字濾波-------------------------------

測量中除傳感器信號外,干擾也會出現(xiàn),他們與信號疊加在一起,扭曲測量結(jié)果。濾波器是一種選頻裝置,可以使信號中特定頻率成分通過,而衰減其他頻率成分。

濾波有一個前提條件,信號的頻率是不重疊的。

P47---------------------------------------------

數(shù)字濾波和模擬濾波的區(qū)別

濾波位置的不同;采樣頻率不同;有效A/D位數(shù);

當(dāng)干擾信號頻率較高時,應(yīng)優(yōu)先模擬濾波將高頻的干擾信號濾除,這樣可以降低采樣頻率。

當(dāng)干擾信號的量程較大時,直接進(jìn)行數(shù)字濾波會使得A/D滿量程精度較小。

濾波器評價(jià)指標(biāo):過渡區(qū)陡峭;脈沖響應(yīng)緊支集。

P48---------------------------------------------

Fs=2048;dt=1.0/Fs;T=1;

N=T/dt;t=[0:N-1]/N;

x1=sin(2*pi*50*t)+sin(2*pi*300*t)+sin(2*pi*500*t);

subplot(4,1,1);

plot(t,x1);axis([0,0.1,-2,2]);

P=fft(x1,N);

Pyy=2*sqrt(P.*conj(P))/N;%幅值量綱還原

f=linspace(0,Fs/2,N/2);

subplot(4,1,2);plot(f,Pyy(1:N/2));

for k=1:N

??P1(k)=real(P(k))+i*(imag(P(k)));

end

for k=400:N-400

??P1(k)=0;

end

for k=1:200

??P1(k)=0;

end

for k=N-200:N

??P1(k)=0;

end

Pyy=2*sqrt(P1.*conj(P1))/N;

f=linspace(0,Fs/2,N/2);

subplot(4,1,3);plot(f,Pyy(1:N/2));

x2=ifft(P1);

subplot(4,1,4);plot(t,x2);

axis([0,0.1,-2,2]);

P49---------------------------------------------

%數(shù)字差分--簡單的高通濾波器

Fs=5000;a=5;

f=2;T=1;

dt=1.0/Fs;

N=T/dt;

t=linspace(0,T,N);

y=a*sin(2*3.14*f*t)+0.3*sin(100*3.14*f*t);

plot(t,y);


x(1)=0;x(N)=0;

for i=2:N-1

??x(i)=(y(i+1)-y(i-1))/2;

end

figure;

plot(t,x);



%數(shù)據(jù)平滑--簡單的低通濾波器

Fs=5000;a=5;

f=2;T=1;

dt=1.0/Fs;

N=T/dt;

t=linspace(0,T,N);

y=a*sin(2*pi*f*t)+0.8*sin(1000*pi*f*t);

subplot(2,1,1);

plot(t,y);

x=y;

for i=1:N-5

??x(i)=[y(i)+y(i+1)+y(i+2)+y(i+3)+y(i+4)]/5;

end

subplot(2,1,2);

plot(t,x);


作業(yè)


Fs=5120;

T=1;

dt=1.0/Fs;

N=T/dt;

t=linspace(0,T,N);

y=sin(2*pi*10*t)+sin(2*pi*500*t);

subplot(5,1,1);

plot(t,y);

%5點(diǎn)平滑濾波

x=y;

for a=1:N-5

??x(a)=[y(a)+y(a+1)+y(a+2)+y(a+3)+y(a+4)]/5;

end

subplot(5,1,2);

plot(t,x);

%頻域?yàn)V波

P=fft(y,N);

Pyy=sqrt(P.*conj(P))/N;%幅值量綱還原

d=linspace(0,Fs,N);

subplot(5,1,3);

plot(d,Pyy);

for k=1:N

??P1(k)=real(P(k))+i*(imag(P(k)));

end

for k=200:N-200

??P1(k)=0;

end

Pyy1=sqrt(P1.*conj(P1))/N;

d=linspace(0,Fs,N);

subplot(5,1,4);

plot(d,Pyy1);

x2=ifft(P1);

subplot(5,1,5);plot(t,x2);

P54--------------------------------------------------------------------------

Fs=2048;dt=1/Fs;

T=1;N=T/dt;t=[0:N-1]/N;

x1=sin(2*pi*50*t)+sin(2*pi*300*t)+sin(2*pi*500*t);

subplot(3,1,1);plot(t,x1);

axis([0,0.1,-2,2]);P=fft(x1,N);

Pyy = 2*sqrt(P.*conj(P))/N;

f=linspace(0,Fs/2,N/2);

subplot(3,1,2);plot(f,Pyy(1:N/2));

b=fir1(48,0.1);

x2=filter(b,1,x1);

subplot(3,1,3);plot(t,x2);axis([0,0.1,-2,2])

figure;

c=fir1(48,[0.2,0.4]);

x3=filter(c,1,x1);

subplot(2,1,1);plot(t,x3);axis([0,0.1,-2,2])

d=fir1(48,0.4,'high');

x4=filter(d,1,x1);

subplot(2,1,2);plot(t,x4);axis([0,0.1,-2,2])



%%?原始信號

Fs=5120;dt=1/Fs;

T=1;N=T/dt;t=[0:N-1]/N;

%含有低(100Hz)、中(600Hz)、高(1000Hz)三個不同頻率成分的測試信號

x1=sin(2*pi*100*t)+sin(2*pi*600*t)+sin(2*pi*1000*t);

subplot(2,1,1);plot(t,x1);

axis([0,0.1,-3,3]);P=fft(x1,N);

Pyy = 2*sqrt(P.*conj(P))/N;

f=linspace(0,Fs/2,N/2);

subplot(2,1,2);plot(f,Pyy(1:N/2));

%% fir1

figure;

b=fir1(48,0.1);

%48-代表濾波器的階數(shù),指在濾波器的傳遞函數(shù)中有幾個極點(diǎn),同時決定了轉(zhuǎn)折區(qū)的下降速度

x2=filter(b,1,x1);

subplot(3,1,1);plot(t,x2);axis([0,0.1,-2,2])

c=fir1(48,[0.1,0.3]);

x3=filter(c,1,x1);

subplot(3,1,2);plot(t,x3);axis([0,0.1,-2,2])

d=fir1(48,0.3,'high');

x4=filter(d,1,x1);

subplot(3,1,3);plot(t,x4);axis([0,0.1,-2,2])

%% fir2

figure

f1=[0 0.1 0.1 1];%低通

mhi1=[1 1 0 0];

b1=fir2(48,f1,mhi1);

x2_fir2=filter(b1,1,x1);

subplot(3,1,1);plot(t,x2_fir2);axis([0,0.1,-2,2])

f2=[0 0.1 0.1 0.3 0.3 1];

mhi2=[0 0 1 1 0 0];

c1=fir2(48,f2,mhi2);

x3_fir2=filter(c1,1,x1);

subplot(3,1,2);plot(t,x3_fir2);axis([0,0.1,-2,2])

f3=[0 0.3 0.3 1];

mhi3=[0 0 1 1];

d1=fir2(48,f3,mhi3);

x4_fir2=filter(d1,1,x1);

subplot(3,1,3);plot(t,x4_fir2);axis([0,0.1,-2,2])

%% firls

figure

% f1=[0 0.1 0.1 1];%低通

% mhi1=[1 1 0 0];

b2=firls(48,f1,mhi1);

x2_firls=filter(b2,1,x1);

subplot(3,1,1);plot(t,x2_firls);axis([0,0.1,-2,2])

% f2=[0 0.1 0.1 0.3 0.3 1];

% mhi2=[0 0 1 1 0 0];

c2=firls(48,f2,mhi2);

x3_firls=filter(c2,1,x1);

subplot(3,1,2);plot(t,x3_firls);axis([0,0.1,-2,2])

% f3=[0 0.3 0.3 1];

% mhi3=[0 0 1 1];

d2=firls(48,f3,mhi3);

x4_firls=filter(d2,1,x1);

subplot(3,1,3);plot(t,x4_firls);axis([0,0.1,-2,2])





【公開課】數(shù)字信號分析理論與實(shí)踐(基于matlab) - 華中科技大學(xué)(數(shù)字信的評論 (共 條)

分享到微博請遵守國家法律
平顶山市| 苏尼特左旗| 菏泽市| 乌鲁木齐县| 上犹县| 湘西| 瑞丽市| 上犹县| 昌都县| 沙雅县| 迁西县| 基隆市| 铁岭市| 库尔勒市| 凉山| 冷水江市| 清徐县| 襄汾县| 祥云县| 内丘县| 阜新市| 德州市| 芦溪县| 上栗县| 正安县| 荥经县| 通辽市| 信丰县| 增城市| 阳高县| 丽水市| 凤山市| 中牟县| 光泽县| 临潭县| 长岭县| 盐亭县| 湟源县| 南和县| 伊宁市| 拉萨市|