最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復(fù)習(xí)筆記Day108:武漢大學(xué)2023數(shù)學(xué)分析參考答案

2023-02-28 19:59 作者:間宮_卓司  | 我要投稿

這張考卷上面有不少計算題,建議大家自己算一下

一、計算題

1.求極限%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_0%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%7D? ?

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_0%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%7D%5Cxlongequal%7B%5Ctext%7Bstolz%E5%AE%9A%E7%90%86%7D%7D%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_%7B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%7D%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7B2n%7D

%5Cbegin%7Baligned%7D%0A%09%5Cint_%7B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%7D%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cleft(%20x%2B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%20%5Cright)%20%5Cleft%7C%20%5Csin%20%5Cleft(%20x%2B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%20%5Cright)%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7Bx%5Csin%20x%5Cmathrm%7Bd%7Dx%7D%2B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%20%5Cint_0%5E%7B%5Cpi%7D%7B%5Csin%20x%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cpi%20%2B2%5Cleft(%20n-1%20%5Cright)%20%5Cpi%5C%5C%0A%09%26%3D%5Cleft(%202n-1%20%5Cright)%20%5Cpi%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_0%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%7D%3D%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%202n-1%20%5Cright)%20%5Cpi%7D%7B2n%7D%3D%5Cpi%20

2.求極限

%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cln%20%5Cleft(%20e%5E%7B%5Ctan%20x%7D%2B%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%20%2B%5Ctan%20x%7D%7B%5Cmathrm%7Barc%7D%5Csin%20%5Cleft(%202023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%7D

對于分母,有

%5Cmathrm%7Barc%7D%5Csin%20%5Cleft(%202023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%20%5Csim%202023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%5Cleft(%20x%5Crightarrow%200%20%5Cright)%20

對于分子,有

%5Cbegin%7Baligned%7D%0A%09%5Cln%20%5Cleft(%20e%5E%7B%5Ctan%20x%7D%2B%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%20%2B%5Ctan%20x%26%3D%5Cln%20%5Cleft(%20e%5E%7B2%5Ctan%20x%7D%2Be%5E%7B%5Ctan%20x%7D%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%5C%5C%0A%09%26%5Csim%20e%5E%7B2%5Ctan%20x%7D%2Be%5E%7B%5Ctan%20x%7D%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D-1%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B2%5Ctan%20x%7D-1%2Be%5E%7B%5Ctan%20x%7D%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%7B2023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B2%5Ctan%20x%7D-1%7D%7B2023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%2B%5Cfrac%7B1%7D%7B2023%7D

e%5E%7B2%5Ctan%20x%7D-1%5Csim%202%5Ctan%20x%5Csim%202x

%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%5Csim%20%5Cleft(%20%5Cfrac%7Bx%5E2%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D2%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7Dx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D

所以

%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B2%5Ctan%20x%7D-1%7D%7B2023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%3D0

3.垃圾題目,題都懶得抄上來了

二、計算題

1.求%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B1%7D%7B3%2B%5Csin%20%5E2x%7D%5Cmathrm%7Bd%7Dx%7D

%5Cbegin%7Baligned%7D%0A%09%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B1%7D%7B3%2B%5Csin%20%5E2x%7D%5Cmathrm%7Bd%7Dx%7D%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Csin%20%5E2x%2B%5Ccos%20%5E2x%7D%7B4%5Csin%20%5E2x%2B3%5Ccos%20%5E2x%7D%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Ctan%20%5E2x%2B1%7D%7B4%5Ctan%20%5E2x%2B3%7D%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Csec%20%5E2x%7D%7B4%5Ctan%20%5E2x%2B3%7D%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctan%20x%7D%7B4%5Ctan%20%5E2x%2B3%7D%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctan%20x%7D%7B4%5Ctan%20%5E2x%2B3%7D%7D%2B%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctan%20x%7D%7B4%5Ctan%20%5E2x%2B3%7D%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%2B%5Cint_%7B-%5Cinfty%7D%5E0%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%5C%5C%0A%09%26%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

(好像寫啰嗦了,算了懶得該了)

下面來計算最后一個積分

%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Cleft(%20%5Cfrac%7B2%7D%7B%5Csqrt%7B3%7D%7Dx%20%5Cright)%7D%7B%5Cleft(%20%5Cfrac%7B2%7D%7B%5Csqrt%7B3%7D%7Dx%20%5Cright)%20%5E2%2B1%7D%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7B3%7D%7D%5Ccdot%20%5Cleft(%20%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cleft(%20-%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5Cright)%20%5Cright)%20%3D%5Cfrac%7B%5Cpi%7D%7B2%5Csqrt%7B3%7D%7D

2.已知f連續(xù)可微,且f(1)%3D2%2Cf(4)%3D3,求%5Coint_L%7B%5Cfrac%7Bf%5Cleft(%20xy%20%5Cright)%7D%7By%7D%5Cmathrm%7Bd%7Dy%7DLy%3Dx%2Cy%3D4x,xy%3D1%2Cxy%3D4所圍區(qū)域的邊界,取逆時針方向

%5Cint_L%7B%5Cfrac%7Bf%5Cleft(%20xy%20%5Cright)%7D%7By%7D%5Cmathrm%7Bd%7Dy%7D%5Cxlongequal%7B%5Ctext%7BGreen%E5%85%AC%E5%BC%8F%7D%7D%5Ciint_S%7B%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%0A%09%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%26%09%09%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5C%5C%0A%090%26%09%09%5Cfrac%7Bf%5Cleft(%20xy%20%5Cright)%7D%7By%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%7C%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D%3D%5Ciint_S%7Bf'%5Cleft(%20xy%20%5Cright)%20%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D

%5Ciint_S%7Bf'%5Cleft(%20xy%20%5Cright)%20%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D%5Cxlongequal%5B%5Cfrac%7By%7D%7Bx%7D%3Dv%5D%7Bxy%3Du%7D%5Cint_1%5E4%7B%5Cmathrm%7Bd%7Dv%5Cint_1%5E4%7Bf'%5Cleft(%20u%20%5Cright)%20%5Cleft%7C%20%5Cfrac%7B%5Cpartial%20%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20%5Cleft(%20u%2Cv%20%5Cright)%7D%20%5Cright%7C%5Cmathrm%7Bd%7Du%7D%7D

計算可得

%5Cleft%7C%20%5Cfrac%7B%5Cpartial%20%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20%5Cleft(%20x%2Cy%20%5Cright)%7D%20%5Cright%7C%3D%5Cfrac%7B2y%7D%7Bx%7D%3D2v

然后根據(jù)Day32的結(jié)論,有%5Cleft%7C%20%5Cfrac%7B%5Cpartial%20%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20%5Cleft(%20u%2Cv%20%5Cright)%7D%20%5Cright%7C%3D%5Cfrac%7B1%7D%7B2v%7D

所以

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cint_1%5E4%7B%5Cfrac%7B1%7D%7B2v%7D%5Cmathrm%7Bd%7Dv%5Cint_1%5E4%7Bf'%5Cleft(%20u%20%5Cright)%20%5Cmathrm%7Bd%7Du%7D%7D%3D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cln%204-%5Cln%201%20%5Cright)%20%5Cright)%20%5Cleft(%20f%5Cleft(%204%20%5Cright)%20-f%5Cleft(%201%20%5Cright)%20%5Cright)%20%3D%5Cln%202

3.求曲面積分%5Ciint_S%7Bz%5Cleft(%20%5Cfrac%7B%5Calpha%20x%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Cbeta%20y%7D%7Bb%5E2%7D%2B%5Cfrac%7B%5Cgamma%20z%7D%7Bc%5E2%7D%20%5Cright)%20%5Cmathrm%7Bd%7DS%7D,其中S%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%2B%5Cfrac%7Bz%5E2%7D%7Bc%5E2%7D%3D1的上半平面,%5Calpha%2C%5Cbeta%2C%5CgammaS的外方向余弦

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Ciint_S%7B%5Cfrac%7Bxz%7D%7Ba%5E2%7D%5Cmathrm%7Bd%7Dy%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Byz%7D%7Bb%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Bz%5E2%7D%7Bc%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D

S_1%3D%5C%7B(x%2Cy%2Cz)%7Cz%3D0%2C%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1%20%20%5C%7D,那么

%5Ciint_%7BS%2BS_1%7D%7B%5Cfrac%7Bxz%7D%7Ba%5E2%7D%5Cmathrm%7Bd%7Dy%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Byz%7D%7Bb%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Bz%5E2%7D%7Bc%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D%5Cxlongequal%7B%5Ctext%7BGauss%E5%85%AC%E5%BC%8F%7D%7D%5Cleft(%20%5Cfrac%7B1%7D%7Ba%5E2%7D%2B%5Cfrac%7B1%7D%7Bb%5E2%7D%2B%5Cfrac%7B2%7D%7Bc%5E2%7D%20%5Cright)%20%5Ciiint_%7B%5COmega%7D%7Bz%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%5Cmathrm%7Bd%7Dz%7D

做代換x%3Dar%5Ccos%20%5Ctheta%20%5Csin%20%5Cvarphi%20%2Cy%3Dbr%5Csin%20%5Ctheta%20%5Csin%20%5Cvarphi%20%2Cz%3Dcr%5Ccos%20%5Cvarphi%20,可得

%5Cbegin%7Baligned%7D%0A%09%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cleft(%20%5Cfrac%7B1%7D%7Ba%5E2%7D%2B%5Cfrac%7B1%7D%7Bb%5E2%7D%2B%5Cfrac%7B2%7D%7Bc%5E2%7D%20%5Cright)%20%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cmathrm%7Bd%7D%5Cvarphi%20%5Cint_0%5E%7B2%5Cpi%7D%7B%5Cmathrm%7Bd%7D%5Ctheta%20%5Cint_0%5E1%7B%5Cleft(%20abcr%5E2%5Csin%20%5Cvarphi%20%5Cright)%20cr%5Ccos%20%5Cvarphi%20%5Cmathrm%7Bd%7Dr%7D%7D%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(%20%5Cfrac%7B1%7D%7Ba%5E2%7D%2B%5Cfrac%7B1%7D%7Bb%5E2%7D%2B%5Cfrac%7B2%7D%7Bc%5E2%7D%20%5Cright)%20abc%5E2%5Cpi%5C%5C%0A%5Cend%7Baligned%7D

三、解答題

1.求F%5Cleft(%20%5Calpha%20%5Cright)%20%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%7D%7D%5Cmathrm%7Bd%7Dx%7D的連續(xù)區(qū)間

依比較判別法,要使這個積分收斂,首先要有

%5Cbegin%7Bcases%7D%0A%09%5Calpha%20-%5Cfrac%7B5%7D%7B2%7D%3C1%5C%5C%0A%09%5Calpha%20%3E1%5C%5C%0A%5Cend%7Bcases%7D

1%3C%5Calpha%20%3C%5Cfrac%7B7%7D%7B2%7D成立,而此時,%5Cforall%20%5Calpha%20%5Cin%20%5Cleft%5B%20%5Calpha%20_1%2C%5Calpha%20_2%20%5Cright%5D%20%5Csubset%20%5Cleft(%201%2C%5Cfrac%7B7%7D%7B2%7D%20%5Cright)%20,總成立

F%5Cleft(%20%5Calpha%20%5Cright)%20%3C%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cmax%20%5Cleft%5C%7B%20%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_1%7D%7D%2C%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_2%7D%7D%20%5Cright%5C%7D%20%5Cmathrm%7Bd%7Dx%7D%5Cle%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_1%7D%7D%5Cmathrm%7Bd%7Dx%7D%2B%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_2%7D%7D%5Cmathrm%7Bd%7Dx%7D

依魏爾斯特拉斯判別法,F%5Cleft(%20%5Calpha%20%5Cright)%20在定義域上內(nèi)閉一致收斂,依一致收斂的性質(zhì),F%5Cleft(%20%5Calpha%20%5Cright)%20在定義域上連續(xù)

2.對點列z_n%3D(x_n%2Cy_n)(n%3D1%2C2%2C%5Ccdots),有

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Cunderline%7B%5Clim%20%7D%7D%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20%3D%5Calpha%20%2C%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Coverline%7B%5Clim%20%7D%7D%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20%3D%5Cbeta%20%2C%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cleft%5C%7C%20z_%7Bn%2B1%7D-z_n%20%5Cright%5C%7C%20%3D0

證明:對任意的%5Cgamma%20%5Cin%20%5Cleft(%20%5Calpha%20%2C%5Cbeta%20%5Cright)%20%2Cx%5E2%2By%5E2%3Dr%5E2上至少存在%5C%7Bz_n%5C%7D的一個聚點

d_n%3D%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20,那么

%5Cleft%7C%20d_%7Bn%2B1%7D-d_n%20%5Cright%7C%3D%5Cleft%7C%20%5Cleft%5C%7C%20z_%7Bn%2B1%7D%20%5Cright%5C%7C%20-%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20%5Cright%7C%5Cle%20%5Cleft%5C%7C%20z_%7Bn%2B1%7D-z_n%20%5Cright%5C%7C%20%5Crightarrow%200

72.1,可知d_n以任意的%5Cgamma%20%5Cin%20%5Cleft(%20%5Calpha%20%2C%5Cbeta%20%5Cright)%20為聚點,這和要證明的結(jié)論是等價的

3.問是否存在[0,5]上的函數(shù)f(x)滿足下列條件,并說明

(1)f(x)連續(xù)可微

(2)f(0)%3Df(5)%3D1

(3)%5Cleft%7C%20f'%5Cleft(%20x%20%5Cright)%20%5Cright%7C%5Cle%20%5Cfrac%7B2%7D%7B5%7D

(4)%5Cleft%7C%20%5Cint_0%5E5%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%20%5Cright%7C%5Cle%20%5Cfrac%7B5%7D%7B2%7D

先來大概判斷一下這個函數(shù)存不存在,考慮如下這種最極端的情況

這個時候面積就正好是5/2,而如果面積想要更小的話,曲線就要向下凹,這樣第三個條件就不滿足了,所以這樣的函數(shù)可能是不存在的,下面來證明這件事

當(dāng)x%5Cin(0%2C%5Cfrac%7B5%7D%7B2%7D)%20時,依泰勒展開,有

f%5Cleft(%20x%20%5Cright)%20%3Df%5Cleft(%200%20%5Cright)%20%2B%5Cleft(%20x-%5Cfrac%7B5%7D%7B2%7D%20%5Cright)%20f'%5Cleft(%20%5Cxi%20%5Cright)%20%5Cge%20f%5Cleft(%200%20%5Cright)%20%2B%5Cfrac%7B2%7D%7B5%7D%5Cleft(%20x-%5Cfrac%7B5%7D%7B2%7D%20%5Cright)%20%3D%5Cfrac%7B2%7D%7B5%7Dx

%5Cint_0%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%7B%5Cfrac%7B2%7D%7B5%7Dx%5Cmathrm%7Bd%7Dx%7D%3D%5Cfrac%7B5%7D%7B4%7D

同理可證,%5Cint_%7B%5Cfrac%7B5%7D%7B2%7D%7D%5E5%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cfrac%7B5%7D%7B4%7D,并且兩個等號同時成立當(dāng)且僅當(dāng)

f'%5Cleft(%20x%20%5Cright)%20%3D%5Cbegin%7Bcases%7D%0A%09-%5Cfrac%7B2%7D%7B5%7D%2Cx%5Cin%20%5Cleft(%200%2C%5Cfrac%7B5%7D%7B2%7D%20%5Cright)%5C%5C%0A%09%5Cfrac%7B2%7D%7B5%7D%2Cx%5Cin%20%5Cleft(%20%5Cfrac%7B5%7D%7B2%7D%2C5%20%5Cright)%5C%5C%0A%5Cend%7Bcases%7D

(嚴格來說是這個式子幾乎處處成立吧,但是這樣說就越來越說不清楚了)此時f(x)不可導(dǎo),故等號不成立,故第四個條件不成立,即這樣的函數(shù)是不存在的

4.已知u(x%2Cy)D%3Ax%5E2%2By%5E2%5Cle1上連續(xù),且在x%5E2%2By%5E2%3C1滿足%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D%3Du

(1)證明:存在x%5E2%2By%5E2%3D1上有u(x%2Cy)%5Cge0,則在x%5E2%2By%5E2%5Cle1上也有u(x%2Cy)%5Cge0

(2)證明:存在x%5E2%2By%5E2%3D1上有u(x%2Cy)%3E0,則在x%5E2%2By%5E2%5Cle1上也有u(x%2Cy)%3E0

(1)設(shè)在x%5E2%2By%5E2%3C1上有極小值點(x%5E*%2Cy%5E*),那么依Day34的結(jié)論,在那個點,有%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2C%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D%5Cge%200,故

u%5Cleft(%20x%5E*%2Cy%5E*%20%5Cright)%20%3D%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D%20%5Cright)%20%5Cleft(%20x%5E*%2Cy%5E*%20%5Cright)%20%5Cge%200

(2)設(shè)x%5E2%2By%5E2%3D1u(x%2Cy)有最小值c%3E0,記v%3Du-c%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20,那么

%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20y%5E2%7D%3D%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D-4c%3Du-4c%3Cv%3Du-c%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20

那么v%3E%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20y%5E2%7Dv%5Cge%200,x%5E2%2By%5E2%3D1,和(1)一樣可以證明v%3E0,x%5E2%2By%5E2%3C1,即u%3Ec%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20,x%5E2%2By%5E2%3C1,故結(jié)論得證

5.設(shè)f(x)是僅有正實根的多項式,且%5Cfrac%7Bf'%5Cleft(%20x%20%5Cright)%7D%7Bf%5Cleft(%20x%20%5Cright)%7D%3D-%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7Bc_nx%5En%7D

(1)證明c_n%3E0(n%3E0)

(2)證明極限%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csqrt%5Bn%5D%7Bc_n%7D%7D存在,且為f(x)的根的最小值

(1)設(shè)f%5Cleft(%20x%20%5Cright)%20%3D%5Cleft(%20x-x_1%20%5Cright)%20%5Cleft(%20x-x_2%20%5Cright)%20%5Ccdots%20%5Cleft(%20x-x_m%20%5Cright)%20,那么

%5Cfrac%7Bf'%5Cleft(%20x%20%5Cright)%7D%7Bf%5Cleft(%20x%20%5Cright)%7D%3D%5Cfrac%7B1%7D%7Bx-x_1%7D%2B%5Cfrac%7B1%7D%7Bx-x_2%7D%2B%5Ccdots%20%2B%5Cfrac%7B1%7D%7Bx-x_m%7D

進而

%5Cleft(%20%5Cfrac%7Bf'%5Cleft(%20x%20%5Cright)%7D%7Bf%5Cleft(%20x%20%5Cright)%7D%20%5Cright)%20%5E%7B%5Cleft(%20k%20%5Cright)%7D%3D%5Csum_%7Bn%3D1%7D%5Em%7B%5Cleft(%20-1%20%5Cright)%20%5Ekk!%5Cleft(%20x-x_n%20%5Cright)%20%5E%7B-1-k%7D%7D%3D-%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7Bk!c_%7Bn%2Bk%7Dx%5En%7D%2Ck%3D0%2C1%2C%5Ccdots%20

令x=0可得%5Csum_%7Bn%3D1%7D%5Em%7B%5Cfrac%7B1%7D%7Bx_%7Bn%7D%5E%7Bk%7D%7D%7D%3Dc_k%3E0

(2)不妨設(shè)x_1%5Cle%20x_2%5Cle%20%5Ccdots%20%5Cle%20x_m,那么

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csqrt%5Bn%5D%7Bc_n%7D%7D%3D%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csqrt%5Bn%5D%7B%5Csum_%7Bk%3D1%7D%5Em%7B%5Cfrac%7B1%7D%7Bx_%7Bm%7D%5E%7Bn%7D%7D%7D%7D%7D%3Dx_1

(這個需要嚴格證明一下,但是我懶得寫了)

這套考卷的答案在公眾號考研競賽數(shù)學(xué)上面也有,我寫到一半才發(fā)現(xiàn)···大家可以結(jié)合著看

復(fù)習(xí)筆記Day108:武漢大學(xué)2023數(shù)學(xué)分析參考答案的評論 (共 條)

分享到微博請遵守國家法律
巧家县| 宁晋县| 阳高县| 栾城县| 青神县| 广汉市| 泰和县| 石嘴山市| 深水埗区| 宁南县| 湘潭县| 漳浦县| 正阳县| 铜山县| 肥城市| 集贤县| 广宁县| 清丰县| 海安县| 闽侯县| 栖霞市| 五莲县| 大英县| 五大连池市| 三江| 郴州市| 建德市| 嵊州市| 会泽县| 漳浦县| 竹山县| 五家渠市| 南乐县| 淮阳县| 新闻| 合水县| 大石桥市| 维西| 舞阳县| 资兴市| 麟游县|