最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

一陽(yáng)傻三月?困擾1/3人的新冠后遺癥“腦霧”,如何重回狀態(tài)?

2023-01-09 10:48 作者:時(shí)光派官方  | 我要投稿



新冠放開不足半月,感染高峰期已經(jīng)暫告一段落,與此同時(shí),另一新冠相關(guān)情況卻沖上熱搜,成為人們最關(guān)注的問題之一:新冠后遺癥。

衛(wèi)健委表示,我國(guó)疫情防控工作重心將從“防感染”轉(zhuǎn)向“保健康、防重癥”,而浙江等地更是新開了專門的“陽(yáng)康”門診,包括中醫(yī)養(yǎng)療和心理咨詢等,開始嘗試解決廣泛存在的新冠后遺癥問題。

很多讀者反映,為啥新冠“陽(yáng)康”后仿佛“失了智”?你沒有感覺錯(cuò)!這正是困擾了大多數(shù)“楊康”們的新冠后遺癥“腦霧”。今天,派派就為你詳細(xì)介紹,腦霧是什么、腦霧怎么辦。


其實(shí)“腦霧”并不是新詞,在之前便有相關(guān)的說法,2004年,“腦霧”的概念便已經(jīng)出現(xiàn)在了專業(yè)文獻(xiàn)中[1],通俗來說,就是患者們覺得自己腦子里好像有迷霧籠罩,隔絕了思維和記憶。

而在之前的研究中,腦霧和基礎(chǔ)疾病有關(guān),還和慢性應(yīng)激、睡眠不足、荷爾蒙變化(如妊娠或絕經(jīng))、營(yíng)養(yǎng)不良、化療或病毒感染相關(guān)[2]。

新冠三年,“腦霧”這個(gè)詞迅速占據(jù)大眾視野,為此,世界衛(wèi)生組織也為“腦霧”重新設(shè)置了一個(gè)定義:

“腦霧”是急性COVID-19后患者常見智力功能主訴的非正式術(shù)語(yǔ)。這是一個(gè)總稱,用于解釋認(rèn)知功能障礙的集合,如意識(shí)模糊、短期記憶喪失、頭暈和無(wú)法集中注意力[3]。


根據(jù)臨床大數(shù)據(jù)調(diào)查,大多數(shù)人感覺到的腦霧是真實(shí)存在的,在“陽(yáng)康”們中,有約32%的人會(huì)出現(xiàn)腦霧的癥狀,僅次于疲勞[4];但腦霧對(duì)康復(fù)患者生活的影響卻比疲勞更嚴(yán)重,甚至有的患者癥狀十分明顯,以至于無(wú)法正常工作。


圖注:包括腦霧在內(nèi)的多種精神類后遺癥的發(fā)病率和持續(xù)時(shí)長(zhǎng)

在不同“陽(yáng)康”身上,腦霧的程度也不一樣。感染期的癥狀越嚴(yán)重,則腦霧后遺癥也更嚴(yán)重;除此之外,腦霧的發(fā)病程度還和炎癥標(biāo)志物(例如IL-6和TNF-α)水平高[5]、女性、高齡、既往哮喘[6]、社會(huì)經(jīng)濟(jì)能力低、吸煙、肥胖等[7]因素密切相關(guān)。


一定有人存有疑惑,新冠是一個(gè)主要感染上呼吸道、損傷呼吸系統(tǒng)的疾病,為什么會(huì)造成大腦乃至全身方面的后遺癥呢?

目前的研究表明,新冠后遺癥的出現(xiàn)和五個(gè)關(guān)鍵因素有關(guān):病毒的持久存在、激活其他病原體、誘導(dǎo)自身免疫、組織損傷誘發(fā)持續(xù)炎癥,以及微血栓的形成[8]。但是在腦霧后遺癥患者的腦脊液中并沒有檢測(cè)到病毒的存在[9],因此,炎癥等其他損傷才是造成腦霧的主要原因。


No.1

全身炎癥


新冠病毒感染后免疫應(yīng)答,免疫細(xì)胞方能清除侵入人體的病毒,但是病毒清除完畢,免疫應(yīng)答帶來的副產(chǎn)品——炎癥卻并不打算隨之退場(chǎng),因此全身性炎癥就成為了各種后遺癥的“罪魁禍?zhǔn)住敝弧?/p>

這在腦霧中自然也不例外。腦中的天然免疫細(xì)胞小膠質(zhì)細(xì)胞在新冠感染中被激活[10-11],繼而產(chǎn)生大量促炎性細(xì)胞因子,誘導(dǎo)神經(jīng)炎癥,造成腦電圖的改變和海馬的萎縮[12],從而產(chǎn)生記憶障礙、嗜睡、疲勞和失眠等癥狀[13]。


No.2

多種原因造成的缺氧/缺血


在新冠中,因?yàn)椴《镜母腥?,?nèi)皮功能障礙會(huì)導(dǎo)致血管損傷[14],血栓和炎癥會(huì)導(dǎo)致毛細(xì)血管的堵塞[15],彌漫性血管功能障礙會(huì)造成腦血流量的下降[16]。這些都會(huì)造成相似的后果:缺血和缺氧。大腦中的缺血和缺氧會(huì)造成腦白質(zhì)的損傷,繼而導(dǎo)致認(rèn)知功能障礙、記憶喪失等[17-18]。


圖注:造成腦霧等精神類后遺癥的主要原因[19]

上述病理性原因主要出現(xiàn)在較嚴(yán)重的新冠感染之后,但是輕度新冠患者也有可能出現(xiàn)腦霧的癥狀,他們則是受到了免疫失調(diào)、慢性炎癥、外周器官功能障礙[20]和代謝失調(diào)[21]等的影響,主要癥狀為焦慮和抑郁等。


腦霧在“陽(yáng)康”們中出現(xiàn)的概率這么大,那我們?cè)趺磻?yīng)對(duì)可能緊隨新冠而來的腦霧呢?我們需要科學(xué)的診斷和有效的治療。


No.1

腦霧的診斷


當(dāng)你剛從一場(chǎng)新冠感染中恢復(fù)過來,卻發(fā)現(xiàn)自己好像無(wú)法集中注意力、穩(wěn)定情緒或者和以往一樣記憶,那么你大概率就是患上了“腦霧”!當(dāng)然,如果感覺癥狀已經(jīng)嚴(yán)重到影響了正常生活和工作,則需要去醫(yī)院做影像學(xué)檢查、神經(jīng)絲輕鏈等進(jìn)一步醫(yī)療檢驗(yàn)[22]。


圖注:神經(jīng)性新冠后遺癥的診療算法[23]

No.2

腦霧的治療


腦霧帶來的影響對(duì)大多數(shù)人來說可能是有限的,但是盡可能通過治療緩解癥狀,就能盡可能縮小新冠后遺癥對(duì)生活的影響。


輕癥患者:行為和補(bǔ)劑干預(yù)

是藥三分毒,非藥物干預(yù)措施才是最安全的一線治療選擇,在應(yīng)對(duì)新冠后遺癥時(shí)也是如此。

通過有氧漸進(jìn)式運(yùn)動(dòng)訓(xùn)練計(jì)劃進(jìn)行身體修復(fù);及時(shí)補(bǔ)充水和電解質(zhì);小心避免可能加劇癥狀的情況(熬夜、出汗、喝酒或暴飲暴食)[24]。

還有一些更針對(duì)“腦霧”這一癥狀的行為訓(xùn)練,能較好地緩解新冠帶來的腦霧癥狀:

做增強(qiáng)記憶力的相關(guān)訓(xùn)練,以解決注意力不集中、無(wú)法記住常用詞和難以回憶前一天的事件等癥狀,例如做筆記、使用計(jì)劃器記錄信息以及將任務(wù)細(xì)分為小點(diǎn)以防止大腦疲勞;向記憶缺失的患者講述缺失部分記憶場(chǎng)景,幫助回憶;制定預(yù)防復(fù)發(fā)的行為計(jì)劃,包括制定日?;顒?dòng)清單等,保持精神活躍,減少自我批評(píng),增加自我鼓勵(lì)[25]。


除此之外,一些日常補(bǔ)劑也在腦霧的改善中發(fā)揮著重要的作用。

1.褪黑素:根據(jù)臨床試驗(yàn)驗(yàn)證,褪黑素能顯著改善認(rèn)知能力、抑郁狀況和睡眠質(zhì)量,在每日0.15mg/kg的褪黑素干預(yù)下,腦霧患者的海馬萎縮、淀粉樣蛋白堆積等腦損傷情況得到了有效緩解[26];


2.木犀草素:木犀草素具有廣泛的抗病毒活性,而且能很好地滲透到大腦中,抑制小膠質(zhì)細(xì)胞和肥大細(xì)胞,抑制神經(jīng)炎癥,減少認(rèn)知功能的下降,改善腦霧情況[27-28];

3.來自迷迭香的鼠尾草酸(CA):鼠尾草酸能通過抑制NLRP3炎癥小體來抑制活化的小膠質(zhì)細(xì)胞,有效抑制細(xì)胞因子風(fēng)暴,具有保護(hù)神經(jīng)和改善腦霧的潛力,且它僅在氧化和炎癥部位激活,具有良好的安全性[29]。


重癥患者:醫(yī)療干預(yù)和藥物治療

對(duì)于行為和補(bǔ)劑無(wú)法明顯改善的患者,則需要盡早就醫(yī),并藥物干預(yù),值得注意的是,任何精神類藥物都需要在醫(yī)生監(jiān)督下服用,即使在文獻(xiàn)或媒體中看到了對(duì)癥藥物,也不要輕易嘗試!

同時(shí),即使是在醫(yī)囑下安全服用,這類藥物也不能長(zhǎng)期服用,它們的心血管副作用較高,會(huì)讓本就被新冠病毒損傷的心肌等雪上加霜。

———///———

看完上述對(duì)新冠后遺癥腦霧的詳細(xì)介紹,再面對(duì)腦霧的時(shí)候是不是既不會(huì)恐慌、也不會(huì)輕視了?

小小的腦霧,大大的影響,如果不幸被腦霧“選中了”也不要聽之任之,想要撥開腦子里的“迷霧”,恢復(fù)到新冠前的水平,還得需要我們對(duì)自己的健康負(fù)責(zé),認(rèn)真做行為訓(xùn)練,小心選擇補(bǔ)劑和藥物,愿每一位讀者都能靈臺(tái)清明,無(wú)病無(wú)災(zāi)。


參考文獻(xiàn)

[1] Dillon J. F. (2004). Hepatitis C: What is the best treatment?. Journal of viral hepatitis, 11 Suppl 1, 23–27. https://doi.org/10.1111/j.1365-2893.2004.00573.x

[2] Campos, M. C., Nery, T., Starke, A. C., de Bem Alves, A. C., Speck, A. E., & S Aguiar, A. (2022). Post-viral fatigue in COVID-19: A review of symptom assessment methods, mental, cognitive, and physical impairment. Neuroscience and biobehavioral reviews, 142, 104902. https://doi.org/10.1016/j.neubiorev.2022.104902

[3] Krishnan, K., Lin, Y., Prewitt, K. M., & Potter, D. A. (2022). Multidisciplinary Approach to Brain Fog and Related Persisting Symptoms Post COVID-19. Journal of health service psychology, 48(1), 31–38. https://doi.org/10.1007/s42843-022-00056-7

[4] Premraj, L., Kannapadi, N. V., Briggs, J., Seal, S. M., Battaglini, D., Fanning, J., Suen, J., Robba, C., Fraser, J., & Cho, S. M. (2022). Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. Journal of the neurological sciences, 434, 120162. https://doi.org/10.1016/j.jns.2022.120162

[5] Peluso, M. J., Lu, S., Tang, A. F., Durstenfeld, M. S., Ho, H. E., Goldberg, S. A., Forman, C. A., Munter, S. E., Hoh, R., Tai, V., Chenna, A., Yee, B. C., Winslow, J. W., Petropoulos, C. J., Greenhouse, B., Hunt, P. W., Hsue, P. Y., Martin, J. N., Daniel Kelly, J., Glidden, D. V., … Henrich, T. J. (2021). Markers of Immune Activation and Inflammation in Individuals With Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. The Journal of infectious diseases, 224(11), 1839–1848. https://doi.org/10.1093/infdis/jiab490

[6] Chen, C., Haupert, S. R., Zimmermann, L., Shi, X., Fritsche, L. G., & Mukherjee, B. (2022). Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. The Journal of infectious diseases, 226(9), 1593–1607. https://doi.org/10.1093/infdis/jiac136

[7] Subramanian, A., Nirantharakumar, K., Hughes, S., Myles, P., Williams, T., Gokhale, K. M., Taverner, T., Chandan, J. S., Brown, K., Simms-Williams, N., Shah, A. D., Singh, M., Kidy, F., Okoth, K., Hotham, R., Bashir, N., Cockburn, N., Lee, S. I., Turner, G. M., Gkoutos, G. V., … Haroon, S. (2022). Symptoms and risk factors for long COVID in non-hospitalized adults. Nature medicine, 28(8), 1706–1714. https://doi.org/10.1038/s41591-022-01909-w

[8] Mantovani, A., Morrone, M. C., Patrono, C., Santoro, M. G., Schiaffino, S., Remuzzi, G., Bussolati, G., & Covid-19 Commission of the Accademia Nazionale dei Lincei (2022). Long Covid: where we stand and challenges ahead. Cell death and differentiation, 29(10), 1891–1900. https://doi.org/10.1038/s41418-022-01052-6

[9] Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M., Anheim, M., & Meziani, F. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. The New England journal of medicine, 382(23), 2268–2270. https://doi.org/10.1056/NEJMc2008597

[10] Vasek, M. J., Garber, C., Dorsey, D., Durrant, D. M., Bollman, B., Soung, A., Yu, J., Perez-Torres, C., Frouin, A., Wilton, D. K., Funk, K., DeMasters, B. K., Jiang, X., Bowen, J. R., Mennerick, S., Robinson, J. K., Garbow, J. R., Tyler, K. L., Suthar, M. S., Schmidt, R. E., … Klein, R. S. (2016). A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature, 534(7608), 538–543. https://doi.org/10.1038/nature18283

[11] Heneka, M. T., Golenbock, D., Latz, E., Morgan, D., & Brown, R. (2020). Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer's research & therapy, 12(1), 69. https://doi.org/10.1186/s13195-020-00640-3

[12] Semmler, A., Widmann, C. N., Okulla, T., Urbach, H., Kaiser, M., Widman, G., Mormann, F., Weide, J., Fliessbach, K., Hoeft, A., Jessen, F., Putensen, C., & Heneka, M. T. (2013). Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of neurology, neurosurgery, and psychiatry, 84(1), 62–69. https://doi.org/10.1136/jnnp-2012-302883

[13] Thakur, K. T., Miller, E. H., Glendinning, M. D., Al-Dalahmah, O., Banu, M. A., Boehme, A. K., Boubour, A. L., Bruce, S. S., Chong, A. M., Claassen, J., Faust, P. L., Hargus, G., Hickman, R. A., Jambawalikar, S., Khandji, A. G., Kim, C. Y., Klein, R. S., Lignelli-Dipple, A., Lin, C. C., Liu, Y., … Canoll, P. (2021). COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain : a journal of neurology, 144(9), 2696–2708. https://doi.org/10.1093/brain/awab148

[14] Zhou, H., Lu, S., Chen, J., Wei, N., Wang, D., Lyu, H., Shi, C., & Hu, S. (2020). The landscape of cognitive function in recovered COVID-19 patients. Journal of psychiatric research, 129, 98–102. https://doi.org/10.1016/j.jpsychires.2020.06.022

[15] Chen, Y., Yang, W., Chen, F., & Cui, L. (2022). COVID-19 and cognitive impairment: neuroinvasive and blood?brain barrier dysfunction. Journal of neuroinflammation, 19(1), 222. https://doi.org/10.1186/s12974-022-02579-8

[16] Brun, G., Hak, J. F., Coze, S., Kaphan, E., Carvelli, J., Girard, N., & Stellmann, J. P. (2020). COVID-19-White matter and globus pallidum lesions: Demyelination or small-vessel vasculitis?. Neurology(R) neuroimmunology & neuroinflammation, 7(4), e777. https://doi.org/10.1212/NXI.0000000000000777

[17] Ystad, M., Hodneland, E., Adolfsdottir, S., Haász, J., Lundervold, A. J., Eichele, T., & Lundervold, A. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55(1), 24–31. https://doi.org/10.1016/j.neuroimage.2010.11.016

[18] Lu, Y., Li, X., Geng, D., Mei, N., Wu, P. Y., Huang, C. C., Jia, T., Zhao, Y., Wang, D., Xiao, A., & Yin, B. (2020). Cerebral Micro-Structural Changes in COVID-19 Patients - An MRI-based 3-month Follow-up Study. EClinicalMedicine, 25, 100484. https://doi.org/10.1016/j.eclinm.2020.100484

[19] Moghimi, N., Di Napoli, M., Biller, J., Siegler, J. E., Shekhar, R., McCullough, L. D., Harkins, M. S., Hong, E., Alaouieh, D. A., Mansueto, G., & Divani, A. A. (2021). The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 infection. Current neurology and neuroscience reports, 21(9), 44. https://doi.org/10.1007/s11910-021-01130-1

[20] Newhouse, A., Kritzer, M. D., Eryilmaz, H., Praschan, N., Camprodon, J. A., Fricchione, G., & Chemali, Z. (2022). Neurocircuitry Hypothesis and Clinical Experience in Treating Neuropsychiatric Symptoms of Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of the Academy of Consultation-Liaison Psychiatry, 63(6), 619–627. https://doi.org/10.1016/j.jaclp.2022.08.007

[21] Hosp, J. A., Dressing, A., Blazhenets, G., Bormann, T., Rau, A., Schwabenland, M., Thurow, J., Wagner, D., Waller, C., Niesen, W. D., Frings, L., Urbach, H., Prinz, M., Weiller, C., Schroeter, N., & Meyer, P. T. (2021). Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain : a journal of neurology, 144(4), 1263–1276. https://doi.org/10.1093/brain/awab009

[22] Dangayach, N. S., Newcombe, V., & Sonnenville, R. (2022). Acute Neurologic Complications of COVID-19 and Postacute Sequelae of COVID-19. Critical care clinics, 38(3), 553–570. https://doi.org/10.1016/j.ccc.2022.03.002

[23] Stefanou, M. I., Palaiodimou, L., Bakola, E., Smyrnis, N., Papadopoulou, M., Paraskevas, G. P., Rizos, E., Boutati, E., Grigoriadis, N., Krogias, C., Giannopoulos, S., Tsiodras, S., Gaga, M., & Tsivgoulis, G. (2022). Neurological manifestations of long-COVID syndrome: a narrative review. Therapeutic advances in chronic disease, 13, 20406223221076890. https://doi.org/10.1177/20406223221076890

[24] Bisaccia, G., Ricci, F., Recce, V., Serio, A., Iannetti, G., Chahal, A. A., St?hlberg, M., Khanji, M. Y., Fedorowski, A., & Gallina, S. (2021). Post-Acute Sequelae of COVID-19 and Cardiovascular Autonomic Dysfunction: What Do We Know?. Journal of cardiovascular development and disease, 8(11), 156. https://doi.org/10.3390/jcdd8110156

[25] Mathern, R., Senthil, P., Vu, N., & Thiyagarajan, T. (2022). Neurocognitive Rehabilitation in COVID-19 Patients: A Clinical Review. Southern medical journal, 115(3), 227–231. https://doi.org/10.14423/SMJ.0000000000001371

[26] Cardinali, D. P., Brown, G. M., & Pandi-Perumal, S. R. (2022). Possible Application of Melatonin in Long COVID. Biomolecules, 12(11), 1646. https://doi.org/10.3390/biom12111646

[27] Theoharides, T. C., Cholevas, C., Polyzoidis, K., & Politis, A. (2021). Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. BioFactors (Oxford, England), 47(2), 232–241. https://doi.org/10.1002/biof.1726

[28] De Luca, P., Camaioni, A., Marra, P., Salzano, G., Carriere, G., Ricciardi, L., Pucci, R., Montemurro, N., Brenner, M. J., & Di Stadio, A. (2022). Effect of Ultra-Micronized Palmitoylethanolamide and Luteolin on Olfaction and Memory in Patients with Long COVID: Results of a Longitudinal Study. Cells, 11(16), 2552. https://doi.org/10.3390/cells11162552

[29] Satoh, T., Trudler, D., Oh, C. K., & Lipton, S. A. (2022). Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants (Basel, Switzerland), 11(1), 124. https://doi.org/10.3390/antiox11010124

一陽(yáng)傻三月?困擾1/3人的新冠后遺癥“腦霧”,如何重回狀態(tài)?的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
永定县| 盐池县| 扶绥县| 措美县| 武安市| 洱源县| 广州市| 甘泉县| 鄱阳县| 清流县| 黄骅市| 修文县| 瑞金市| 玉田县| 兴文县| 尼玛县| 绍兴县| 弋阳县| 海阳市| 新乡县| 崇明县| 樟树市| 玉溪市| 石渠县| 肃北| 泉州市| 景洪市| 高陵县| 常熟市| 营口市| 礼泉县| 玉林市| 清苑县| 富锦市| 封丘县| 沙湾县| 宁远县| 密山市| 大丰市| 平安县| 来安县|