最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

黑馬程序員python教程,8天python從入門到精通,學python看這套就

2023-02-07 10:31 作者:聽聽浪浪山  | 我要投稿

第105節(jié),你們的地圖也是這樣子的嗎?


from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts

# 數(shù)據(jù)對象創(chuàng)建
map = Map()
# 數(shù)據(jù)準備
data =[
    ("北京市",99),
    ("上海市",199),
    ("廣動省",399),
    ("江蘇省",699),
    ("山東省",999)
]
# 數(shù)據(jù)添加
map.add("地圖",data,"china",)

# 設置全局的數(shù)據(jù)
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        # 數(shù)據(jù)范圍校準
        pieces=[
            {"min":1 ,"max": 9,"label":"1-9人", "color":"#CCFFFF"},
            {"min":10 ,"max": 99,"label":"10-99人", "color":"#FFFF99"},
            {"min":100 ,"max":499 ,"label":"100-499人", "color":"#FF9966"},
            {"min":500 ,"max": 999,"label":"500-999人", "color":"#FF6666"},
            {"min":1000 ,"max": 9999,"label":"1000-9999人", "color":"#CC3333"},
            {"min":10000,"label":"10000以上", "color":"#990033"}
        ])
)
# 數(shù)據(jù)生成
map.render()
#

P106 數(shù)據(jù)補充,最笨的方法

import json
from pyecharts.charts import Map
from pyecharts.options import LabelOpts
from pyecharts.options import *
from pyecharts import options as opts


fc = open("D:/疫情.txt",'r',encoding='UTF-8')

fc_data = fc.read()

fc_json = json.loads(fc_data)

fc_province_list = fc_json["areaTree"][0]["children"]

# 接收需要的數(shù)據(jù)
data_list = []

# 循環(huán)獲取需要的數(shù)據(jù)
for province_list in fc_province_list :
    province_name = province_list["name"]
    if province_name == "新疆":
        province_name = province_name+"維吾爾自治區(qū)"
    elif  province_name == "西藏":
        province_name = province_name + "自治區(qū)"
    elif province_name == "廣西":
        province_name = province_name + "壯族自治區(qū)"
    elif province_name == "重慶" or province_name == "北京" or province_name == "天津":
        province_name = province_name + "市"
    elif province_name == "內(nèi)蒙古" :
        province_name = province_name + "自治區(qū)"
    elif province_name == "寧夏":
        province_name = province_name + "回族自治區(qū)"
    elif province_name == "香港" or province_name == "澳門":
        province_name = province_name + "特別行政區(qū)"
    else:
        province_name = province_name + "省"

    province_confirm = province_list["total"]["confirm"]
    data_list.append((province_name,province_confirm))

map = Map()

map.add("個省份確診人數(shù)",data_list,"china")

#全局選項
map.set_global_opts(
    title_opts=TitleOpts("全國疫情地圖"),
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"}
        ]

    )
)

map.render()

fc.close()


from pyecharts.charts import Bar
from pyecharts.options import *
from pyecharts.charts import Timeline
from pyecharts.globals import ThemeType


# 文件讀取
f = open("D:/1960-2019全球GDP數(shù)據(jù).csv",'r',encoding="GB2312")
# 讀取所有行,并接收
data_lines =  f.readlines()
# 關閉文件
f.close()
# 刪除第一條數(shù)據(jù)
data_lines.pop(0)

# 數(shù)據(jù)獲取
data_dict = {}

# 獲取每行的數(shù)據(jù)
for lines in data_lines:
    year = int(lines.split(",")[0])
    country = lines.split(",")[1]
    gdp = float(lines.split(",")[2])

    try:
        data_dict[year].append([country,gdp])
    except KeyError:
        data_dict[year] = []
        data_dict[year].append([country,gdp])

# print(data_dict)

# 排序年份
sort_list_year = sorted(data_dict.keys())
# 創(chuàng)建時間線對象
timeLine = Timeline({"theme":ThemeType.LIGHT})

# 循環(huán)獲取國家數(shù)據(jù)
for year in sort_list_year:
    # 取出前8的國家
    data_dict[year].sort(key=lambda element:element[1],reverse=True)
    year_date = data_dict[year][0:8]
    # 構建柱狀圖
    x_data =[]
    y_data =[]
    for country_gdp in year_date:
        x_data.append(country_gdp[0])
        y_data.append(country_gdp[1]/100000000)
    # 構建柱狀圖
    bar = Bar()

    # 數(shù)據(jù)反轉
    x_data.reverse()
    y_data.reverse()
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(億)",y_data,label_opts=LabelOpts(position="right"))

    # 反轉 x,y
    bar.reversal_axis()

    # 設置每一年的標題
    bar.set_global_opts(
        title_opts=TitleOpts(title=f"{year}年全球前8GDP數(shù)據(jù)")
    )
    timeLine.add(bar,str(year))

timeLine.add_schema(
    play_interval=500,
    is_timeline_show=True,
    is_auto_play=True,
    is_loop_play=False
)
timeLine.render("1960-2014年全球GDP數(shù)據(jù).html")


黑馬程序員python教程,8天python從入門到精通,學python看這套就的評論 (共 條)

分享到微博請遵守國家法律
雷州市| 辉南县| 南和县| 潍坊市| 宜黄县| 咸丰县| 九龙县| 郧西县| 五莲县| 阿瓦提县| 常州市| 顺平县| 湘西| 肃南| 临海市| 高安市| 长岛县| 民县| 清丰县| 尚志市| 临漳县| 常山县| 通城县| 荔浦县| 于都县| 长子县| 将乐县| 镇安县| 治县。| 金溪县| 三门峡市| 扬中市| 南木林县| 怀集县| 建瓯市| 澄城县| 垦利县| 都安| 织金县| 博湖县| 宝山区|