最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

改進(jìn)的侏儒貓鼬優(yōu)化算法(IDMO)附matlab代碼

2023-02-04 23:40 作者:Matlab工程師  | 我要投稿

?作者簡(jiǎn)介:熱愛科研的Matlab仿真開發(fā)者,修心和技術(shù)同步精進(jìn),matlab項(xiàng)目合作可私信。

??個(gè)人主頁(yè):Matlab科研工作室

??個(gè)人信條:格物致知。

? 內(nèi)容介紹

This paper proposes a new metaheuristic algorithm called dwarf?mongoose?optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses' social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms.

? 部分代碼

%_______________________________________________________________________________________%

%? Dwarf Mongoose?Optimization?Algorithm source codes (version 1.0)? ? ? ? ? ? ? ? ? ? ?%

%? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%

%? Developed in MATLAB R2015a (7.13)? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? %

clear all?

clc


Solution_no=50;? % Number of search agents

F_name='F1';? % Name of the test function that can be from F1 to F23

M_Iter=200;? % Maximum numbef of iterations??


[LB,UB,Dim,F_obj]=Get_F(F_name);?

[Best_FF,Best_P,conv]=IDMO(Solution_no,M_Iter,LB,UB,Dim,F_obj);??


figure('Position',[200? ? ? ? ?300? ? ? ? 770? ? ? ? ?267])

subplot(1,2,1);

func_plot(F_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([F_name,'( x_1 , x_2 )'])

box on

axis tight

axis square



subplot(1,2,2);

semilogy(conv,'Color','r','LineWidth',1.5)

title('Convergence curve')

xlabel('Iteration#');

ylabel('Best score obtained so far');

box on

axis tight

axis squar


display(['The best-obtained solution by IDMO is : ', num2str(Best_P)]);

display(['The best optimal values of the objective funciton found by IDMO is : ', num2str(Best

? 運(yùn)行結(jié)果

編輯

? 參考文獻(xiàn)

[1] Agushaka J O ,? Ezugwu A E ,? Abualigah L . Dwarf Mongoose Optimization Algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022(Mar.1):391.

? 完整代碼

??部分理論引用網(wǎng)絡(luò)文獻(xiàn),若有侵權(quán)聯(lián)系博主刪除

?? 關(guān)注我領(lǐng)取海量matlab電子書和數(shù)學(xué)建模資料

?


改進(jìn)的侏儒貓鼬優(yōu)化算法(IDMO)附matlab代碼的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
南宫市| 石台县| 凤阳县| 丰城市| 云龙县| 昌图县| 泾阳县| 黔西| 泰安市| 乐业县| 顺义区| 冷水江市| 东丽区| 台山市| 莱州市| 定安县| 舒兰市| 青州市| 延川县| 石林| 冀州市| 宣恩县| 积石山| 保定市| 平阴县| 天等县| 嘉义市| 贡嘎县| 伊川县| 青神县| 老河口市| 沾益县| 宁化县| 峨边| 美姑县| 抚顺市| 梅河口市| 和平区| 通辽市| 教育| 荔波县|