最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

OF wmake編譯過(guò)程中的一點(diǎn)小知識(shí)

2023-04-13 21:54 作者:孤魂星  | 我要投稿


慢慢的學(xué)啊學(xué)

還有options中包含的頭文件如何跟.C源文件的對(duì)應(yīng)關(guān)系。

Application

? ? pisoFoam


Description

瞬態(tài)不可壓縮、有湍流 使用的piso算法

我還是不知道為什么添加這些頭文件 只知道要和Make/options 中進(jìn)行對(duì)應(yīng) 包含的是lnInclude下對(duì)應(yīng)第一個(gè)包含頭文件


pisoFoam 的方程是啥(瞬態(tài)、不可壓縮,不計(jì)算能量方程,不計(jì)算體積力,)


這是沒(méi)有添加湍流模型時(shí)候的不可壓縮、不計(jì)體積力、不計(jì)能量方程的N-S方程化簡(jiǎn)式:


連續(xù)性方程:div(u) =0


動(dòng)量方程: ddt(u) + div(uu)=-grad(p)+laplacian(nu,u)


有了湍流模型之后,要對(duì)原來(lái)的方程,應(yīng)該如何進(jìn)行修改才能剛好適配呢?


連續(xù)性方程應(yīng)該還是老形式,但是量變了,在雷諾時(shí)均思想下:

連續(xù)性方程:div(\overhat{u}) = 0


使用雷諾時(shí)均思想以及boussinesq hypothesis的動(dòng)量方程 (不知道他是不是這么干的,還得從代碼中才能看到,有痕跡)

動(dòng)量方程: ddt(\overhat{u}) + div(\overhat{uu}) = -grad(\overhat{p})+(nu+nu_{t}) laplacian(\overhat{u})


然后就是配套的湍流模型,pisoFoam 可以laminar 也可以 LES 也可以RAS ,這里面我感覺(jué)更復(fù)雜了,不同地方的鏈接 還能保持一致,我沒(méi)必要深究


等于這個(gè)不可壓縮的N-S方程中


\*------------------------------------------------------------------------------------------------*/


/* 將這里寫(xiě)成對(duì)應(yīng)Make/options中頭文件的包含順序 */


/* 這個(gè)MomentumTransportModels 里面包含: compressible/ ?incompressible/ ?momentumTransportModels/ ?phaseCompressible/ ?phaseIncompressible/ */

// 1 ?

// -I$(LIB_SRC)/MomentumTransportModels/momentumTransportModels/lnInclude

// 盲猜:這個(gè)里面是一堆湍流模型,是不是將其全部引用上,后面案例用誰(shuí)就對(duì)應(yīng)上誰(shuí)


// 2 ?

// -I$(LIB_SRC)/MomentumTransportModels/incompressible/lnInclude

//這個(gè)是在MomentumTransportModels/incompressible/lnInclude/kinematicMomentumTransportModel.H

// 這對(duì)應(yīng)的是 運(yùn)動(dòng)動(dòng)量輸運(yùn)模型 ( viscosityModel 是不是應(yīng)該叫這個(gè))

// 這個(gè)lnInclude 在ubuntu終端顯示有個(gè)@ 表示軟鏈接 只有庫(kù)文件才會(huì)生成lnInclude 這里面是生成的包含文件

// 還有一點(diǎn) options 里 -I 是包含的頭文件 ?到了后面的lnInclude 就是把這里面的頭文件都掏一遍。

// 到了這里 #include 就是選擇哪個(gè)頭文件進(jìn)行使用,也就是在雞蛋籃子里 選

// 擇雞蛋 "kinematicMomentumTransportModel.H" 運(yùn)動(dòng)動(dòng)量輸運(yùn)模型 ?這個(gè)是動(dòng)量方程

#include "kinematicMomentumTransportModel.H" ?


// 3

// -I$(LIB_SRC)/transportModels/lnInclude

//這個(gè)頭文件是在 transportModels/singlePhaseTransportModel

// 等于是transportModels 里面有dynamicTransportModel dynamicTransportModel

// kinematicTransportModel ?viscosityModels 你要使用那個(gè) 取決于你要計(jì)算的模型

// 然后包括在里面 要用的那個(gè)咱自己不知道咋搞 從文獻(xiàn)里面看 我的LNG分層 是什么動(dòng)量傳輸模型呢?

// 位置是在src/transportModels下 應(yīng)該叫傳輸模型 父類(lèi)是IOdictionary 和 kinematicTransportModel

// 和上面的那個(gè)kinematicMomentumTransportModel.H 不一樣?。。?!

// 還是包含了lnInclude 里面的所有頭文件 將里面的一個(gè) singlePhaseTransportModel.H,拿出來(lái)用

// 這個(gè)是單相輸運(yùn)方程

#include "singlePhaseTransportModel.H"


// 4

// -I$(LIB_SRC)/finiteVolume/lnInclude \

// /finiteVolume/lnInclude/fvCFD.H

// 從這里就能找到fvCFD.H生成的庫(kù)文件,然后從雞蛋籃子里面,取出來(lái)"fvCFD.H"

#include "fvCFD.H"


// 5

// -I$(LIB_SRC)/finiteVolume/lnInclude

// /finiteVolume/lnInclude/pisoControl.H

#include "pisoControl.H"


// 6

// -I$(LIB_SRC)/finiteVolume/lnInclude

// /finiteVolume/lnInclude/pisoControl.H

// 同理,從 lnInclude 文件夾中取出來(lái)"pressureReference.H"

#include "pressureReference.H"


// 7

// -I$(LIB_SRC)/finiteVolume/lnInclude

// /finiteVolume/lnInclude/fvModels.H

// 同理,從 lnInclude 文件夾中取出來(lái)"fvModels.H"

#include "fvModels.H"


// 8

// -I$(LIB_SRC)/finiteVolume/lnInclude

// /finiteVolume/lnInclude/fvConstraints.H

#include "fvConstraints.H"


// 9

// -I$(LIB_SRC)/meshTools/lnInclude ? 這是按照路徑來(lái)的,按照路徑找就行

// Collection of static functions to do various simple mesh related things.

// 也就是關(guān)于網(wǎng)格操作的工具都在這里面,應(yīng)該是對(duì)應(yīng)求解器中


// 10

// 這個(gè)應(yīng)該是取樣 里面的所有頭文件都搞一遍 ?現(xiàn)在還不知道在哪里使用。

// -I$(LIB_SRC)/sampling/lnInclude ?


// 4-8 都是在 -I$(LIB_SRC)/meshTools/lnInclude

// 9 是網(wǎng)格工具 ?這倆基本在任何OF的求解器中都有

// 前面那1 盲猜是為了案例中選擇湍流模型準(zhǔn)備的

// 2-3是為了選擇與其匹配的動(dòng)量方程準(zhǔn)備的



OF wmake編譯過(guò)程中的一點(diǎn)小知識(shí)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
浦东新区| 余江县| 双牌县| 阳西县| 云梦县| 三门峡市| 潜山县| 凤城市| 无锡市| 丰宁| 武汉市| 清新县| 徐水县| 嘉义市| 天水市| 广饶县| 喀喇沁旗| 黄大仙区| 葫芦岛市| 沿河| 额敏县| 雷州市| 垣曲县| 新泰市| 若尔盖县| 库车县| 富源县| 大洼县| 平原县| 泽库县| 泰宁县| 丰县| 任丘市| 彩票| 布尔津县| 武隆县| 九江县| 长治县| 乃东县| 浦城县| 镇赉县|