最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Prime Dream(5)——素?cái)?shù)定理

2022-03-20 10:12 作者:子瞻Louis  | 我要投稿

其他文集:《雜文集》《數(shù)學(xué)分析》

本系列文集:《Prime Dream》

引言

本系列的第二期得到了以下等式:

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpsi(x)%7Dx

本期將會(huì)運(yùn)用偏分析的方法證明上式的極限為1,也就是素?cái)?shù)定理,既然是偏分析的方法,上一期的知識(shí)還是得必備的:

當(dāng)然證明了這個(gè)定理只是本系列的一個(gè)開(kāi)胃小菜(笑),不出意外的話本系列還會(huì)有十幾期呢

在素?cái)?shù)定理的證明中需要引入一個(gè)我們都十分熟悉并且非常重要的函數(shù):

%5Czeta(s)%3A%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5Es%7D%2C%5Cquad%20%5CRe(s)%3E1

證明方法來(lái)自華羅庚的《數(shù)論導(dǎo)引》,不過(guò)這本書里面的證明雖然也是通過(guò)Fourier分析的方法,但是并沒(méi)有提到過(guò)Fourier幾個(gè)字,以至于可能有很多初學(xué)者看的云里霧里的,這里? ? 將里面的證明方法改進(jìn)了一下

Ikehara定理

這里將會(huì)用上一節(jié)的Fejér定理來(lái)證明該定理,在此之前需要證明一個(gè)引理:

(引理)設(shè)?g%3A%5Cmathbb%20R%5E%2B%5Cto%5Cmathbb%20R%5E%2B?是非負(fù)的分段連續(xù)函數(shù),且對(duì)任意?%5Cepsilon%3E0,積分

%5Cint_0%5E%5Cinfty%20g(t)e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dt

收斂,則

  • %5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_0%5E%5Cinfty%20g(t)e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dt%3D%5Cint_0%5E%5Cinfty%20g(t)%5Cmathrm%20dt

??因?yàn)?g 非負(fù),所以對(duì)任意?%5Cepsilon%3E0

%5Cint_0%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7Dg(t)%5Cmathrm%20dt%5Cle%20%5Cint_0%5E%5Cinfty%20g(t)%5Cmathrm%20dt

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_0%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7Dg(t)%5Cmathrm%20dt%5Cle%20%5Cint_0%5E%5Cinfty%20g(t)%5Cmathrm%20dt

又因?yàn)閷?duì)?M%3E0

%5Cint_0%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7Dg(t)%5Cmathrm%20dt%5Cge%20%5Cint_0%5EM%20e%5E%7B-%5Cepsilon%20t%7Dg(t)%5Cmathrm%20dt%5Cge%20e%5E%7B-%5Cepsilon%20M%7D%5Cint_0%5EM%20g(t)%5Cmathrm%20dt

所以可得

%5Cint_0%5EMg(t)%5Cmathrm%20dt%5Cle%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_0%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7Dg(t)%5Cmathrm%20dt%5Cle%20%5Cint_0%5E%5Cinfty%20g(t)%5Cmathrm%20dt

令?M%5Cto%5Cinfty?便可得引理

%5Csquare%0A

(定理)設(shè)?f%3A%5Cmathbb%20R%5E%2B%5Cto%5Cmathbb%20R%5E%2B?是有界變差函數(shù),且?f(t)%3D%5Cmathcal%20O(e%5Et),其Laplace變換

F(s)%3D%5Cint_0%5E%5Cinfty%20f(t)e%5E%7B-st%7D%5Cmathrm%20dt

在?%5CRe(s)%3E1?時(shí)收斂,若?G(s)%3A%3DF(s)-%5Cfrac%20A%7Bs-1%7D?可以解析延拓至?%5CRe(s)%5Cge1,則

  • %5Clim_%7Bt%5Cto%5Cinfty%7D%5Cfrac%7Bf(t)%7D%7Be%5Et%7D%3DA

? 令?s%3D1%2B%5Cepsilon%2Bi%5Cxi%2C(%5Cxi%5Cin%5Cmathbb%20R%2C%5Cepsilon%3E0),因?yàn)?/p>

%5Cfrac1%7Bs-1%7D%3D%5Cfrac1%7B%5Cepsilon%2Bi%5Cxi%7D%3D%5Cint_%7B0%7D%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7D%5Ccdot%20e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt

所以

%5Cbegin%7Baligned%7DG(1%2B%5Cepsilon%2Bi%5Cxi)%26%3D%5Cint_0%5E%5Cinfty%20%5Cfrac%7Bf(t)%7D%7Be%5Et%7De%5E%7B-%5Cepsilon%20t%7D%5Ccdot%20e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt-%5Cint_%7B0%7D%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7D%5Ccdot%20e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cint_0%5E%5Cinfty%5Cleft(%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-A%5Cright)e%5E%7B-%5Cepsilon%20t%7D%5Ccdot%20e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cint_0%5E%5Cinfty%20H(t)%5Cleft(%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-A%5Cright)e%5E%7B-%5Cepsilon%20t%7D%5Ccdot%20e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

為了方便,記

g_%7B%5Cepsilon%7D(t)%3A%3DH(t)%5Cleft(%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-A%5Cright)e%5E%7B-%5Cepsilon%20t%7D

為了聯(lián)系上一章的定理,不妨考慮以下積分

%5Cmathfrak%20S_%7B%5Cepsilon%2CT%7D(x)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20k_T(x-t)g_%5Cepsilon(t)%5Cmathrm%20dt

其中?k_T%3D%5Cfrac%7B%5Cmathfrak%20F_T%7D%7B2%5Cpi%7D?是積分Fejér核除以2π的結(jié)果(見(jiàn)上一期),T%3E0,有

%5Cbegin%7Baligned%7D%5Cmathfrak%20S_%7B%5Cepsilon%2CT%7D(x)%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7D%7BT%7D%5Cright)e%5E%7Bi%5Cxi%20(x-t)%7D%5Cmathrm%20d%5Cxi%5Ccdot%20g_%5Cepsilon(t)%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7D%7BT%7D%5Cright)%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20g_%5Cepsilon(t)e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt%20%5Ccdot%20e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-T%7D%5ET%5Cleft(1-%5Cfrac%7B%7C%5Cxi%7C%7D%7BT%7D%5Cright)%20G(1%2B%5Cepsilon%2Bi%5Cxi)e%5E%7Bi%5Cxi%20x%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

根據(jù)Riemann-Lebesgue引理,可得

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cmathfrak%20S_%7B%5Cepsilon%2CT%7D(x)%3D0

因?yàn)镚可以延拓至?%5CRe(s)%5Cge1,所以上式當(dāng)??%5Cepsilon%5Cto0%5E%2B?也成立,而根據(jù)引理,有

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cmathfrak%20S_%7B%5Cepsilon%2CT%7D(x)%3D%5Cmathfrak%20S_T(x)%3D%5Cint_0%5E%5Cinfty%20k_T(x-t)%5Cleft(%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-A%5Cright)%5Cmathrm%20dt

因此得到對(duì)任意?T%3E0,都有

  • %5Clim_%7Bx%5Cto%5Cinfty%7D%5Cmathfrak%20S_T(x)%3D0

顯然?g_0(t)?有界,又當(dāng)?t%3ER%2C%7Ct-t'%7C%3C%5Crho?時(shí)

%5Cbegin%7Baligned%7D%5Cleft%7C%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-%5Cfrac%7Bf(t')%7D%7Be%5E%7Bt'%7D%7D%5Cright%7C%26%5Cle%20%5Cleft%7C%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-%5Cfrac%7Bf(t')%7D%7Be%5E%7Bt%7D%7D%5Cright%7C%2B%5Cleft%7C%5Cfrac%7Bf(t')%7D%7Be%5E%7Bt'%7D%7D-%5Cfrac%7Bf(t')%7D%7Be%5Et%7D%5Cright%7C%5C%5C%26%3Ce%5E%7B-R%7D%7Cf(t)-f(t')%7C%2B%7Cf(t')%7Ce%5E%7B-t'%7D%7C1-e%5E%7Bt'-t%7D%7C%5Cend%7Baligned%7D

因f是有界變差,故上式第一項(xiàng)在R%5Cto%5Cinfty時(shí)趨于零,而第二項(xiàng)

%7Cf(t')%7Ce%5E%7B-t'%7D%7C1-e%5E%7Bt'-t%7D%7C%3D%5Cmathcal%20O(1-e%5E%7Bt'-t%7D)%3D%5Cmathcal%20O(t'-t)%3D%5Cmathcal%20O(%5Crho)

因此g_0(t)當(dāng)t%5Cto%5Cinfty時(shí)是一致連續(xù)的,根據(jù)Fejér定理,當(dāng)T%5Cto%5Cinfty時(shí)有

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cmathfrak%20S_T(x)%3D%5Clim_%7Bt%5Cto%5Cinfty%7D%5Cfrac%7Bf(t)%7D%7Be%5Et%7D-A

于是定理得證.

%5Csquare%0A

zeta函數(shù)的非零區(qū)域?%5CRe(s)%5Cge1

根據(jù)zeta函數(shù)的Euler乘積,

%5Czeta(s)%3D%5Cprod_%7Bp%7D%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D

可以推出以下等式:

-%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D

利用Riemann-Stieltjes積分,可將上式寫為

-%7B%5Czeta'%5Cover%5Czeta%7D(s)%3D%5Cint_%7B1%5E-%7D%5E%5Cinfty%5Cfrac%7B%5Cmathrm%20d%5Cpsi(x)%7D%7Bx%5Es%7D

其中?%5Cpsi 是我們熟悉的Tchebyshev?psi函數(shù),在右積分中令?x%3De%5Et?并利用分部積分,得

-%7B%5Czeta'%5Cover%20%5Czeta%7D(s)%3D%5Clim_%7Bt%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpsi(e%5Et)%7D%7Be%5E%7Bst%7D%7D%2Bs%5Cint_0%5E%5Cinfty%20%5Cpsi(e%5Et)e%5E%7B-st%7D%5Cmathrm%20dt

根據(jù)熟知的估計(jì)?%5Cpsi(x)%3D%5Cmathcal%20O(x)?,可得對(duì)?%5CRe(s)%3E1?,有

  • -%5Cfrac1%7Bs%7D%5Ccdot%7B%5Czeta'%5Cover%5Czeta%7D(s)%3D%5Cint_0%5E%5Cinfty%20%5Cpsi(e%5Et)e%5E%7B-st%7D%5Cmathrm%20dt

左側(cè)分子顯然解析,為了讓它整個(gè)都解析,只需讓分母不為零,即我們會(huì)探究%5Czeta(s)的零點(diǎn),由其Euler乘積我們可以很輕易的得到一個(gè)非零區(qū)域?%5CRe(s)%3E1 ,為了使用Ikehara定理,需要將它解析延拓并驗(yàn)證其在?%5CRe(s)%3D1?時(shí)非零,而?%5CRe(s)%3E0? 上的解析延拓其實(shí)在我的以前的某期專欄已經(jīng)完成了,所以直接驗(yàn)證它非零吧。首先有

%5Cln%5Czeta(%5Csigma%2Bi%5Ctau)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7B%5Cln%20n%7D%5Ccdot%5Cfrac1%7Bn%5E%7B%5Csigma%2Bi%5Ctau%7D%7D%2C%5Cquad%20%5Csigma%2C%5Ctau%5Cin%5Cmathbb%20R%2C%5Csigma%3E1%2C%5Ctau%E2%89%A00

由此可得

%5Cln%7C%5Czeta(%5Csigma%2Bi%5Ctau)%7C%3D%5CRe%5Cln%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7B%5Cln%20n%20%7D%5Ccdot%5Cfrac%7B%5Ccos(%5Ctau%5Cln%20n)%7D%7Bn%5E%5Csigma%7D

根據(jù)不等式?3%2B4%5Ccos%5Ctheta%2B%5Ccos2%5Ctheta%3D2(1%2B%5Ccos%5Ctheta)%5Cge0,有

%5Cln%7C%5Czeta%5E3(%5Csigma)%5Czeta%5E4(%5Csigma%2Bi%5Ctau)%5Czeta(%5Csigma%2B2i%5Ctau)%7C%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7B%5Cln%20n%7D%5Cfrac%7B2(1%2B%5Ccos%5Ctau%5Cln%20n)%5E2%7D%7Bn%5E%5Csigma%7D%5Cge0

假設(shè)?%5Czeta(1%2Bi%5Ctau_0)%3D0?,則有

%5Czeta(1%2B%5Cepsilon%2Bi%5Ctau_0)%3D%5Cmathcal%20O(%5Cepsilon)%2C%5Cquad0%3C%5Cepsilon%3C1

再由解析延拓可以推得

%5Czeta(1%2B%5Cepsilon%2B2i%5Ctau_0)%3D%5Cmathcal%20O(1)

又有熟知的估計(jì)?%5Czeta(1%2B%5Cepsilon)%3D%5Cmathcal%20O(%5Cepsilon%5E%7B-1%7D)?,那么便得到了

%7C%5Czeta%5E3(1%2B%5Cepsilon)%5Czeta%5E4(1%2B%5Cepsilon%2Bi%5Ctau)%5Czeta(1%2B%5Cepsilon%2B2i%5Ctau)%7C%3D%5Cmathcal%20O(%5Cepsilon)

這是不可能的,綜上可得?%5CRe(s)%5Cge1?時(shí)?%5Czeta(s)?非零

素?cái)?shù)定理

考慮函數(shù)

g(s)%3A%3D%5Czeta(s)-%5Cfrac1%7Bs-1%7D

根據(jù)Riemann-Stieltjes積分及其分部積分公式,可得

%5Cbegin%7Baligned%7D%5Czeta(s)%26%3D%5Cint_%7B1%5E-%7D%5E%5Cinfty%5Cfrac1%7Bx%5Es%7D%20%5Cmathrm%20d%5Bx%5D%5C%5C%26%3D%5Cfrac1%7Bs-1%7D%2B1%2Bs%5Cint_%7B1%5E-%7D%5E%5Cinfty%5Cfrac%7B%5C%7Bx%5C%7D%7D%7Bx%5E%7Bs%2B1%7D%7D%5Cmathrm%20dx%5Cend%7Baligned%7D

也就是

g(s)%3D1%2Bs%5Cint_%7B1%5E-%7D%5E%5Cinfty%5Cfrac%7B%5C%7Bx%5C%7D%7D%7Bx%5E%7Bs%2B1%7D%7D%5Cmathrm%20dx

由此可知,它在?%5CRe(s)%3E0?都是解析的,對(duì)它的原始定義求導(dǎo)得

g'(s)%3D%5Czeta'(s)%2B%5Cfrac1%7B(s-1)%5E2%7D

綜上,便有

%5Cbegin%7Baligned%7D-(s-1)%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%26%3D-%5Cfrac%7B(s-1)%5E2%5Czeta'(s)%7D%7B(s-1)%5Czeta(s)%7D%5C%5C%26%3D%5Cfrac%7B1-(s-1)%5E2g'(s)%7D%7B1%2B(s-1)g(s)%7D%5C%5C%26%3D1-%5Cfrac%7B(s-1)g'(s)%2B(s-1)%5E2g(s)%7D%7B1%2B(s-1)g(s)%7D%5Cend%7Baligned%7D

令?h(s)%3D(s-1)g(s) ,則有

-%5Cfrac%7B%5Czeta'%7D%5Czeta(s)%3D%5Cfrac1%7Bs-1%7D-%5Cfrac%7Bh'(s)%7D%7B1%2Bh(s)%7D

由Zeta函數(shù)在?%5CRe(s)%5Cge1?無(wú)零點(diǎn)可知上式右邊第二項(xiàng)對(duì)?%5CRe(s)%5Cge1?均解析,由此可取

G(s)%3A%3D-%5Cfrac1s%5Ccdot%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)-%5Cfrac1%7Bs-1%7D

便有

%5Cbegin%7Baligned%7DG(s)%26%3D%5Cfrac1%7Bs(s-1)%7D-%5Cfrac1%7Bs-1%7D-%5Cfrac1s%5Ccdot%7B%7Bh'(s)%7D%5Cover%7B1%2Bh(s)%7D%7D%5C%5C%26%3D-%5Cfrac1s-%5Cfrac1s%5Ccdot%5Cfrac%7Bh'(s)%7D%7B1%2Bh(s)%7D%5Cend%7Baligned%7D

所以它滿足Ikehara定理的使用條件,所以得到

%5Clim_%7Bt%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpsi(e%5Et)%7D%7Be%5Et%7D%3D1

令?x%3De%5Et?便可得

  • %5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpsi(x)%7D%7Bx%7D%3D1

這也就是說(shuō)

  • %5Cpi(x)%5Csim%5Cfrac%20x%7B%5Clog%20x%7D%5Csim%5Ctext%7BLi%7D(x)%5Cquad%20(x%5Cto%5Cinfty)

即大名鼎鼎的素?cái)?shù)定理

結(jié)語(yǔ)

本期是緊接上一期的Fejér定理,用它證明了Ikehara定理,之后確定了Riemann zeta函數(shù)的非零區(qū)域,并以此的到了弱形式的素?cái)?shù)定理,今后的專欄會(huì)暫時(shí)圍繞素?cái)?shù)定理的余項(xiàng)展開(kāi),也就是確定

%5Cpsi(x)-x%5Cll%20A(x)

%5Cpi(x)-%5Ctext%7BLi%7D(x)%5Cll%20B(x)

中的函數(shù)?A(x)%2CB(x)?。對(duì)它們的探究自然是與Riemann zeta函數(shù)脫不了關(guān)系,因此之后會(huì)專門寫幾期關(guān)于zeta函數(shù)的專欄


參考

  1. 數(shù)論導(dǎo)引?by?華羅庚

  2. https://www.bilibili.com/read/cv15117474?素?cái)?shù)定理的推論


Prime Dream(5)——素?cái)?shù)定理的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
黎川县| 崇文区| 栾城县| 曲沃县| 卓尼县| 东源县| 屏南县| 莫力| 会理县| 昌黎县| 海兴县| 颍上县| 集安市| 乌兰县| 长兴县| 泾川县| 个旧市| 北碚区| 黄平县| 界首市| 周口市| 江源县| 灵武市| 雅江县| 内乡县| 二手房| 松桃| 多伦县| 金阳县| 巩义市| 洛川县| 兴隆县| 阿拉善左旗| 古田县| 沅陵县| 晋宁县| 孝义市| 昌江| 垦利县| 重庆市| 西昌市|