最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[翻譯]錐線幾何(Geometry of Conics)第一章:二次曲線的諸基本性質(zhì)1.4(II)

2023-08-15 14:45 作者:瀰?夃  | 我要投稿

本文譯自A. V. Akopyan, A. A. Zaslavsky, trans. Alex Martsinkovsky, Geometry of Conics, American Mathematical Society, 2007.
翻譯:野呂侯奈因
僅供學(xué)習(xí)交流使用
譯者按:
?????? 本書在幾何愛好者之間小有人氣,但目前網(wǎng)上只能找到一些零散的翻譯.鑒于目前通行的數(shù)學(xué)教學(xué)中對(duì)于二次曲線問題的處理方式過于單一,希望能借翻譯本書的機(jī)會(huì)來推廣一下二次曲線的射影幾何視角.

定理1.6. 若用一條首尾相連的繩索套住一橢圓%5Calpha,并用一支筆將繩繃緊,繞著橢圓旋轉(zhuǎn)一圈,它將畫出一個(gè)與%5Calpha共焦的橢圓(圖1.19).

(譯者注:該定理常被稱作格雷夫斯定理(Graves's theorem)

圖1.19

證明. 顯然,新圖形(稱其為%5Calpha_1)的邊界是光滑的.我們將說明以下結(jié)論:對(duì)于%5Calpha_1上的任意一點(diǎn)X,都有其與新曲線的切線和%5Cangle%20F_1XF_2的外角平分線重合.

?????? 設(shè)XMXN為其與%5Calpha的兩條切線.自然有%5Cangle%20F_1XN%3D%5Cangle%20F_2XM,因此%5Cangle%20NXM的外角平分線就會(huì)與%5Cangle%20F_1XF_2的外角平分線重合,稱其為l

?????? 設(shè)Yl上的任意一點(diǎn),YLYR為其與%5Calpha的兩條切線,就像圖1.19中這樣.我們不妨假定Y位于X左側(cè),其余情況也類似.

?????? 設(shè)P為直線XMYL的交點(diǎn).不難發(fā)現(xiàn)有YN%3CYR%2B%5Csmallsmile%20RN%5Csmallsmile%20LM%3CLP%2BPM(譯者注:在俄羅斯,人們使用%5Csmallsmile來表示弧).另外,由l平分%5Cangle%20NXP的外角,可得PX%2BXN%3CPY%2BYN.于是有

MX%2BXN%2B%5Csmallsmile%20NM

%3CMX%2BXN%2B%5Csmallsmile%20NL%2BLP%2BPM

%3DPX%2BXN%2B%5Csmallsmile%20NL%2BLP

%3CPY%2BYN%2B%5Csmallsmile%20NL%2BLP

%3DLY%2BYN%2B%5Csmallsmile%20NL

%3CLY%2BYR%2B%5Csmallsmile%20RN%2B%5Csmallsmile%20NL

%3DLY%2BYR%2B%5Csmallsmile%20RL

(此處的弧都表示被繩索覆蓋的?。ㄗg者注:可以試著想象在Y處也掛著繩索).那么就有Y位于%5Calpha_1外,此結(jié)論對(duì)于所有l上異于XY都成立.這說明%5Calpha_1只與l有唯一的交點(diǎn),也就是說,l%5Calpha_1相切.同時(shí)由此也說明了所求的曲線為凸曲線.

?????? 因此,%5Calpha_1上的點(diǎn)到F_1F_2的距離之和不會(huì)隨時(shí)間變化,故用筆畫出的軌跡是就是一個(gè)橢圓.

(譯者注:譯者倒是不認(rèn)為%5Csmallsmile%20LM%3CLP%2BPM屬于“不難發(fā)現(xiàn)”的范疇,故在此畫蛇添足地補(bǔ)證一下:

事實(shí)上,我們可以證明以下內(nèi)容:

命題. 對(duì)于凸曲線p%2Cq%3A%5Ba%2Cb%5D%5Cto%20%5B0%2C%2B%5Cinfty),若有p(a)%3Dq(a);p(b)%3Dq(b);%5Cforall%20x%5Cin%20(a%2Cb)%2Cp(x)%3Cq(x),則p%5Ba%2Cb%5D上的長(zhǎng)度小于q%5Ba%2Cb%5D上的長(zhǎng)度.

證明. 對(duì)于泛函

L(f')%3A%3D%5Cint_a%5Eb%5Csqrt%7Bx'%5E2%2By'%5E2%7D

%3D%5Cint_a%5Eb%5Csqrt%7B1%2B(p'(x))%5E2%7Ddx,

s(x)%3A%3D%5Csqrt%7B1%2Bx%5E2%7D為凹函數(shù),有%5Cforall%20x%2Cy%5Cin%5Cmathbb%7BR%7D%20%2C%20%5Cfrac%7Bs(x)-s(y)%7D%7Bx-y%7D%5Cgeqslant%20s'%20(x),該結(jié)論可由拉格朗日中值定理及比例不等式得出.經(jīng)整理,有%5Cforall%20x%2Cy%5Cin%5Cmathbb%7BR%7D%2Cs(x)%5Cgeqslant%20s(y)%2B(x-y)s'(x),故可得

%5Cint_a%5Eb%5Csqrt%7B1%2B(q'(x))%5E2%7Ddx%5Cgeqslant%20%5Cint_a%5Eb%5Csqrt%7B1%2B(p'(x))%5E2%7Ddx

%2B%5Cint_a%5Eb%5Bq'(x)-p'(x)%5Ds'(p'(x))dx

由積分第二中值定理,有

%5Cexists%5Cxi%5Cin%20%5Ba%2Cb%5D%2C

%5Cint_a%5Eb%5Bq'(x)-p'(x)%5Ds'(p'(x))dx

%3Ds'(p'(a))%5Cint_a%5E%5Cxi%5Bq'(x)-p'(x)%5Ddx

%2Bs'(p'(b))%5Cint_%5Cxi%5Eb%5Bq'(x)-p'(x)%5Ddx

%3D%5Bs'(p'(b))-s'(p'(a))%5D%5Ccdot%20%5Bp(%5Cxi)-q(%5Cxi))%5D

又由命題條件,可得p(%5Cxi)%3Eq(%5Cxi);由s(x)%5B0%2C%2B%5Cinfty)上單調(diào)遞增且p(x)為凸函數(shù),有s'(p'(b))%3Es'(p'(a)).因此有%5Cint_a%5Eb%5Bq'(x)-p'(x)%5Ds'(p'(x))dx%3E0,而再由之前的L(q')%5Cgeqslant%20L(p')%2B%5Cint_a%5Eb%5Bq'(x)-p'(x)%5Ds'(p'(x))dx,原命題得證.)

對(duì)于定理中最后的斷言還有著更嚴(yán)謹(jǐn)?shù)乃悸罚?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=X" alt="X"/>在橢圓之外,將筆放在X的位置并把繩索套在筆和橢圓上.設(shè)f(X)為繩索的長(zhǎng)度,g(X)%3A%3DF_1X%2BF_2X(其中的點(diǎn)應(yīng)被理解為一對(duì)坐標(biāo),即fg都作用在一組實(shí)數(shù)對(duì)上).容易發(fā)現(xiàn)兩函數(shù)都連續(xù)可微,且向量%5Cnabla%20f%3D(%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%2C%5Cfrac%20%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D)%5Cnabla%20g%3D(%5Cfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20x%7D%2C%5Cfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D)在任意一點(diǎn)上都不為零.那么,由隱函數(shù)定理,用筆套一條長(zhǎng)度固定的繩索(即取f的一條等值曲線)畫出的曲線是光滑的(連續(xù)可微).于是這條曲線就可以用一可微函數(shù)R%3DR(t)表示(同樣代表一對(duì)切向量不為零的坐標(biāo)函數(shù)x%3Dx(t)、y%3Dy(t)).就像上文說的那樣,該曲線的切向量%5Cfrac%7BdR%7D%7Bdt%7D%3D(%5Cfrac%7Bdx%7D%7Bdt%7D%2C%5Cfrac%7Bdy%7D%7Bdt%7D)切于g的一條等值曲線,即垂直于R%3DR(t)處的%5Cnabla%20g(R).來考慮函數(shù)g(R(t)),其微分%5Cfrac%7Bdg(R(t))%7D%7Bdt%7D%3D%5Cfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20x%7D%5Cfrac%7Bdx(t)%7D%7Bdt%7D%2B%5Cfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D%5Cfrac%7Bdy(t)%7D%7Bdt%7D%5Cequiv%200(由前面提到的正交條件),也就是說g(R(t))為常值函數(shù),而這代表著該曲線落在一個(gè)具有相同兩焦點(diǎn)的橢圓上.由于從F_1出發(fā)的所有射線都會(huì)經(jīng)過該曲線上一點(diǎn),故該曲線與此橢圓重合.%5Csquare

[翻譯]錐線幾何(Geometry of Conics)第一章:二次曲線的諸基本性質(zhì)1.4(II)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
武城县| 团风县| 龙口市| 高碑店市| 罗甸县| 丰县| 潜山县| 林甸县| 邓州市| 虎林市| 汕头市| 荆州市| 古丈县| 满城县| 佳木斯市| 武夷山市| 安达市| 平罗县| 南充市| 电白县| 化州市| 东乌珠穆沁旗| 吴桥县| 梧州市| 高州市| 桦南县| 普洱| 同江市| 丹寨县| 兰溪市| 扶沟县| 兰西县| 芦溪县| 莒南县| 那坡县| 皮山县| 老河口市| 哈尔滨市| 仁怀市| 涟源市| 临邑县|