最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

2023浙江大學(xué)強(qiáng)基數(shù)學(xué)逐題解析(8)

2023-07-06 00:03 作者:CHN_ZCY  | 我要投稿

封面:《明日醬的水手服》


22. 三條直線l_1%2Cl_2%2Cl_3兩兩平行,l_1l_2間的距離為1,l_2l_3間的距離為%5Cfrac%7B1%7D%7B2%7D,l_1l_3間的距離為%5Cfrac%7B3%7D%7B2%7DA%2CBl_1上的兩個(gè)定點(diǎn)且AB%3D2,M%2CNl_2上的兩個(gè)動(dòng)點(diǎn)且MN%3D2;三角形AMN的外心記為點(diǎn)C,點(diǎn)Cl_3的距離為d,求%5Cleft(d%2B%5Cleft%7CBC%5Cright%7C%5Cright)的最小值.

答案??%5Cfrac%7B%5Csqrt%7B17%7D%7D%7B2%7D.

解析

由于

%5Cfrac%7B3%7D%7B2%7D%3D1%2B%5Cfrac%7B1%7D%7B2%7D

所以l_1%2Cl_2%2Cl_3在同一平面上,且l_2l_1%2Cl_3之間.

過點(diǎn)AAO%5Cbot%20l_2于點(diǎn)O.

不妨設(shè)%5Coverrightarrow%7BMN%7D%5Coverrightarrow%7BAB%7D同向.

O為原點(diǎn),MNx軸正方向,OAy軸正方向,建立平面直角坐標(biāo)系.

設(shè)M%5Cleft(t%2C0%5Cright),則N%5Cleft(t%2B2%2C0%5Cright).

設(shè)C%5Cleft(t%2B1%2Cy_C%5Cright),得

y_C%5E2%2B1%3D%5Cleft(t%2B1%5Cright)%5E2%2B%5Cleft(y_C-1%5Cright)%5E2

%5Cleft(t%2B1%5Cright)%5E2%3D2y_C

所以C在拋物線x%5E2%3D2y上.

F%5Cleft(0%2C%5Cfrac%7B1%7D%7B2%7D%5Cright),則

d%2B%5Cleft%7CBC%5Cright%7C%3D%5Cleft%7CCF%5Cright%7C%2B%5Cleft%7CBC%5Cright%7C%5Cgeq%5Cfrac%7B%5Csqrt%7B17%7D%7D%7B2%7D

當(dāng)且僅當(dāng)C在線段BF上(含端點(diǎn)),即

C%5Cleft(%5Cfrac%7B1%2B%5Csqrt%7B17%7D%7D%7B4%7D%2C%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B16%7D%5Cright)

也即t%3D%5Cfrac%7B-3%2B%5Csqrt%7B17%7D%7D%7B4%7D時(shí)取等.

所以%5Cleft(d%2B%5Cleft%7CBC%5Cright%7C%5Cright)的最小值為%5Cfrac%7B%5Csqrt%7B17%7D%7D%7B2%7D.

23.?今年是浙江大學(xué)建校126周年,將一個(gè)邊長為126的正六邊形劃分成一系列邊與正六邊形的邊平行且邊長為1的正三角形,我們?cè)O(shè)這些正三角形的頂點(diǎn)所能構(gòu)成的正六邊形的數(shù)量為n,求n在十進(jìn)制下的末位數(shù)字.

答案? 1.

解析??

設(shè)將一個(gè)邊長為m%5Cleft(m%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)的正六邊形(記作“大正六邊形”)劃分成一系列邊與正六邊形的邊平行且邊長為1的正三角形后,這些正三角形的頂點(diǎn)所能構(gòu)成的正六邊形(記作“格點(diǎn)正六邊形”)的數(shù)量為a_m.

若某正六邊形滿足:

對(duì)其任意的邊l_1,都存在大正六邊形的某條邊l_2l_1l_2平行或重合.

則記其符合性質(zhì)A.

若某符合性質(zhì)A的正六邊形的邊長為k%5Cleft(1%5Cleq%20k%20%5Cleq%20m%20%2Ck%20%5Cin%20%5Cmathbb%7BN%7D%5E*%20%5Cright),則記其符合性質(zhì)A_k.

那么,符合性質(zhì)A_k的格點(diǎn)正六邊形的個(gè)數(shù)為

2%5Ccdot%20%5Cfrac%7B%5Cleft(m-k%2B1%5Cright)%5Cleft(m-k%2B1%2B2m-2k%2B1%5Cright)%7D%7B2%7D-%5Cleft(2m-2k%2B1%5Cright)%3D3k%5E2-%5Cleft(6m%2B3%5Cright)k%2B3m%5E2%2B3m%2B1

符合性質(zhì)A_k的格點(diǎn)正六邊形的內(nèi)接格點(diǎn)正六邊形(包括其本身)的個(gè)數(shù)為k.

可以證明,不符合性質(zhì)A的格點(diǎn)正六邊形,必然內(nèi)接于唯一的符合性質(zhì)A的格點(diǎn)正六邊形.

記所有格點(diǎn)正六邊形構(gòu)成的集合為S,所有符合性質(zhì)A_k的格點(diǎn)正六邊形的內(nèi)接格點(diǎn)正六邊形(包括它們本身)構(gòu)成的集合為S_k.

S_1%20%5Ccup%20S_2%20%5Ccup%20S_3%20%5Ccup%20%5Ccdots%20%5Ccup%20S_m%20%3DS

且對(duì)任意的i%2Cj%5Cleft(1%5Cleq%20i%20%5Cleq%20m%20%2Ci%20%5Cin%20%5Cmathbb%7BN%7D%5E*%3B1%5Cleq%20j%20%5Cleq%20m%20%2Cj%20%5Cin%20%5Cmathbb%7BN%7D%5E*%20%5Cright),有

S_i%20%5Ccap%20S_j%20%3D%5Cvarnothing

所以

%5Cbegin%7Baligned%7D%0Aa_m%3D%5Cmathrm%7Bcard%7D%5Cleft(S%5Cright)%26%3D%5Csum_%7Bk%3D1%7D%5Em%20%5Cmathrm%7Bcard%7D%5Cleft(S_k%5Cright)%5C%5C%26%0A%3D%20%5Csum_%7Bk%3D1%7D%5Em%20k%5Cleft%5B3k%5E2-%5Cleft(6m%2B3%5Cright)k%2B3m%5E2%2B3m%2B1%5Cright%5D%5C%5C%26%3D%20%5Csum_%7Bk%3D1%7D%5Em%5Cleft%5B3k%5E3-%5Cleft(6m%2B3%5Cright)k%5E2%2B%5Cleft(3m%5E2%2B3m%2B1%5Cright)k%5Cright%5D%5C%5C%26%0A%3D3%5Ccdot%5Cfrac%7Bm%5E2%5Cleft(m%2B1%5Cright)%5E2%7D%7B4%7D-%5Cleft(2m%2B1%5Cright)%5Ccdot%20%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%5Cleft(2m%2B1%5Cright)%7D%7B2%7D%2B%5Cleft(3m%5E2%2B3m%2B1%5Cright)%5Ccdot%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%7D%7B2%7D%5C%5C%26%0A%3D%5Cfrac%7B1%7D%7B4%7Dm%5E4%2B%5Cfrac%7B1%7D%7B2%7Dm%5E3%2B%5Cfrac%7B1%7D%7B4%7Dm%5E2%5C%5C%26%0A%3D%5Cleft%5B%5Cfrac%7Bm%5Cleft(m%2B1%5Cright)%7D%7B2%7D%5Cright%5D%5E2%0A%5Cend%7Baligned%7D

因此

n%3Da_%7B126%7D%3D%5Cleft(%5Cfrac%7B126%5Ccdot127%7D%7B2%7D%5Cright)%5E2%3D63%5E2%5Ccdot127%5E2%20%5Cequiv%201%20%5Cpmod%20%7B10%7D

所以n在十進(jìn)制下的末位數(shù)字為1.






2023浙江大學(xué)強(qiáng)基數(shù)學(xué)逐題解析(8)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
深泽县| 嵩明县| 光山县| 鸡东县| 于田县| 永春县| 大洼县| 修文县| 故城县| 新泰市| 澜沧| 辽宁省| 海宁市| 丽江市| 曲阳县| 宜昌市| 咸阳市| 东丽区| 东乡族自治县| 太仆寺旗| 安平县| 东平县| 安阳市| 英吉沙县| 隆德县| 茂名市| 镶黄旗| 三都| 苍南县| 儋州市| 小金县| 修水县| 繁昌县| 汾阳市| 灵丘县| 分宜县| 湘潭县| 通道| 融水| 饶河县| 体育|