最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

數(shù)值求解波動方程 [5]

2022-09-05 23:10 作者:nyasyamorina  | 我要投稿

二維 PML

????????在二維空間里有兩個空間軸?x_1%2Cx_2,? 那么 PML 變換也應該分別施加在這兩個軸上.? 對于二維 PML 變換應有 %5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmapsto%5Cfrac%5Cpartial%7B%5Cpartial%5Ctilde%20x_1%7D%3D%5Cfrac1%7B1%2B%5Cfrac%7B%5Csigma_1(x_1)%7Ds%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D?和 %5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmapsto%5Cfrac%5Cpartial%7B%5Cpartial%5Ctilde%20x_2%7D%3D%5Cfrac1%7B1%2B%5Cfrac%7B%5Csigma_2(x_2)%7Ds%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D.

????????對二維波動方程施加拉普拉斯變換得?s%5E2%5Cmathcal%20Lu%3Dc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_1%5E2%7D%5Cmathcal%20Lu%2Bc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_2%5E2%7D%5Cmathcal%20Lu.? 然后施加 PML 變換,? 為了簡便,? 記 %5Cgamma_k%3D1%2B%5Cfrac%7B%5Csigma_k%7D%7Bs%7D,? 則得 s%5E2%5Cmathcal%20Lu%3D%5Cfrac%7Bc%5E2%7D%7B%5Cgamma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cleft(%5Cfrac1%7B%5Cgamma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5Cright)%2B%5Cfrac%7Bc%5E2%7D%7B%5Cgamma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cleft(%5Cfrac1%7B%5Cgamma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cright).? 因為 %5Cgamma_1?只與 x_1?有關而與 x_2?無關,? 所以有 %5Cgamma_1%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x_2%7D%5Ccdot%3D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x_2%7D%5Cgamma_1%5Ccdot,? 同理 %5Cgamma_2 也有類似的結論.? 那么上式左右同乘?%5Cgamma_1%5Cgamma_2?得 s%5E2%5Cgamma_1%5Cgamma_2%5Cmathcal%20Lu%3Dc%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cleft(%5Cfrac%7B%5Cgamma_2%7D%7B%5Cgamma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5Cright)%2Bc%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cleft(%5Cfrac%7B%5Cgamma_1%7D%7B%5Cgamma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cright).? 計算可得:??%5Cfrac%7B%5Cgamma_2%7D%7B%5Cgamma_1%7D%3D1%2B%5Cfrac%7B%5Csigma_2-%5Csigma_1%7D%7Bs%2B%5Csigma_1%7D,??%5Cfrac%7B%5Cgamma_1%7D%7B%5Cgamma_2%7D%3D1%2B%5Cfrac%7B%5Csigma_1-%5Csigma_2%7D%7Bs%2B%5Csigma_2%7D?和 s%5E2%5Cgamma_1%5Cgamma_2%3Ds%5E2%2Bs(%5Csigma_1%2B%5Csigma_2)%2B%5Csigma_1%5Csigma_2,? 代入上式得:

s%5E2%5Cmathcal%20Lu%2B(%5Csigma_1%2B%5Csigma_2)s%5Cmathcal%20Lu%2B%5Csigma_1%5Csigma_2%5Cmathcal%20Lu%3Dc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_1%5E2%7D%5Cmathcal%20Lu%2Bc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_2%5E2%7D%5Cmathcal%20Lu%2Bc%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cleft(%5Cfrac%7B%5Csigma_2-%5Csigma_1%7D%7Bs%2B%5Csigma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5Cright)%2Bc%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cleft(%5Cfrac%7B%5Csigma_1-%5Csigma_2%7D%7Bs%2B%5Csigma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cright)

????????引入新量?v_1%2Cv_2,? 使得 %5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%5Cmathcal%20Lv_1%3A%3D%5Cfrac%7B%5Csigma_2-%5Csigma_1%7D%7Bs%2B%5Csigma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5C%5C%5Cmathcal%20Lv_2%3A%3D%5Cfrac%7B%5Csigma_1-%5Csigma_2%7D%7Bs%2B%5Csigma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cend%7Bmatrix%7D%5Cright.,? 上式右邊變?yōu)?c%5E2%5Cnabla%5E2%5Cmathcal%20Lu%2Bc%5E2%5Cvec%5Cnabla%5Ccdot%5Cmathcal%20L%5Cbegin%7Bbmatrix%7Dv_1%5C%5Cv_2%5Cend%7Bbmatrix%7D,? 并且由定義有 %5Cleft%5C%7B%5Cbegin%7Bmatrix%7Ds%5Cmathcal%20Lv_1%2B%5Csigma_1%5Cmathcal%20Lv_1%3D(%5Csigma_2-%5Csigma_1)%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5C%5Cs%5Cmathcal%20Lv_2%2B%5Csigma_2%5Cmathcal%20Lv_2%3D(%5Csigma_1-%5Csigma_2)%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cend%7Bmatrix%7D%5Cright..? 把全部東西從 s 域變回時域即得到:

%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20t%5E2%7D%2B(%5Csigma_1%2B%5Csigma_2)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20t%7D%3Dc%5E2%5Cleft(%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x_1%5E2%7D%2B%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x_2%5E2%7D%2B%5Cfrac%7B%5Cpartial%20v_1%7D%7B%5Cpartial%20x_1%7D%2B%5Cfrac%7B%5Cpartial%20v_2%7D%7B%5Cpartial%20x_2%7D%5Cright)-%5Csigma_1%5Csigma_2u

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%5Cfrac%7B%5Cpartial%20v_1%7D%7B%5Cpartial%20t%7D%3D(%5Csigma_2-%5Csigma_1)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x_1%7D-%5Csigma_1v_1%5C%5C%5Cfrac%7B%5Cpartial%20v_2%7D%7B%5Cpartial%20t%7D%3D(%5Csigma_1-%5Csigma_2)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x_2%7D-%5Csigma_2v_2%5Cend%7Bmatrix%7D%5Cright.

這就是二維的 PML 波動方程了.

????????在寫出離散化前,? 為了簡便先進行一下符號約定:? 記?%5Cmathbb%7Bfield%7D_%7B%5Ccdots%2C%5Cmathbb%7Baxis%5Cpm1%7D%2C%5Ccdots%7D?為 %5Cmathbb%7Bfield_%7B%5Cpm%20axis%7D%7D,? 用這個記法可以很方便地描述與任意一個元素相鄰的其他元素,? 比如說 u_%7B%2Bx_1%7D%3Du_%7Bx_1%2B1%2Cx_2%2Ct%7D,? 還有 v_%7B1%2C-t%7D%3D%7Bv_1%7D_%7Bx_1%2Cx_2%2Ct-1%7D,? 根據(jù)這個記法可以有 u%3A%3Du_%7Bx_1%2Cx_2%2Ct%7D,? 雖然在一定程度上會產(chǎn)生歧義,? 但是因為離散化后的式子只會有指定索引的元素,? 而沒有一整個場,? 所以將就著用吧.

????????使用上述記法,??并使用 %5Cfrac%7Bv_%7Bk%2C%2Bt%7D-v_%7Bk%7D%7D%7B%5CDelta%20t%7D%5Capprox%5Cfrac%7B%5Cpartial%20v_k%7D%7B%5Cpartial%20t%7D 以節(jié)省內(nèi)存,? 二維 PML 波動方程離散化為

u_%7B%2Bt%7D%3Dc_1(u_%7B%2Bx_1%7D%2Bu_%7B-x_1%7D)%2Bc_2(u_%7B%2Bx_2%7D%2Bu_%7B-x_2%7D)%2Bc_3(v_%7B1%2C%2Bx_1%7D-v_%7B1%2C-x_1%7D)%2Bc_4(v_%7B2%2C%2Bx_2%7D-v_%7B2%2C-x_2%7D)%2Bc_5u_%7B-t%7D%2Bc_6u

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dv_%7B1%2C%2Bt%7D%3D%5Cfrac%7B(%5Csigma_2-%5Csigma_1)%5CDelta%20t%7D%7B2%5CDelta%20x_1%7D(u_%7B%2Bx_1%7D-u_%7B-x_1%7D)%2B(1-%5Csigma_1%5CDelta%20t)v_1%5C%5Cv_%7B2%2C%2Bt%7D%3D%5Cfrac%7B(%5Csigma_1-%5Csigma_2)%5CDelta%20t%7D%7B2%5CDelta%20x_2%7D(u_%7B%2Bx_2%7D-u_%7B-x_2%7D)%2B(1-%5Csigma_2%5CDelta%20t)v_2%5Cend%7Bmatrix%7D%5Cright.

其中?c_1%3D%5Cfrac%7Bc%5E2%5CDelta%20t%5E2%7D%7B%5CDelta%20x_1%5E2c_u%7D%3B%5C%3Bc_2%3D%5Cfrac%7Bc%5E2%5CDelta%20t%5E2%7D%7B%5CDelta%20x_2%5E2c_u%7D%3B%5C%3Bc_3%3D%5Cfrac%7Bc%5E2%5CDelta%20t%5E2%7D%7B2%5CDelta%20x_1c_u%7D%3B%5C%3Bc_4%3D%5Cfrac%7Bc%5E2%5CDelta%20t%5E2%7D%7B2%5CDelta%20x_2c_u%7D%3B%5C%3Bc_5%3D%5Cfrac%7B(%5Csigma_1%2B%5Csigma_2)%5CDelta%20t-1%7D%7Bc_u%7D%3B%5C%3Bc_6%3D%5Cfrac%7B2-%5Csigma_1%5Csigma_2%5CDelta%20t%5E2%7D%7Bc_u%7D-2(c_1%2Bc_2)?和 c_u%3D(%5Csigma_1%2B%5Csigma_2)%5CDelta%20t%2B1.

????????離散化后,? 出現(xiàn)了 10 個系數(shù),? 這些系數(shù)的重復度較高,? 所以可以先預計算一部分系數(shù),? 然后在 update! 里再計算其他系數(shù),? 這樣就可以在提升計算速度的同時不占用大量內(nèi)存.? 但是我內(nèi)存大,? 下面實現(xiàn)預計算全部 10?個系數(shù),? 以使計算效率最大化.

????????根據(jù)上面的式子, 二維 PML 波動方程實現(xiàn)為:

????????盡管看起來長得有點恐怖,? 但是邏輯是跟之前的一樣的?(用了很多 julia 特性化簡).? 模擬成品如下:

????????另外重寫了 WaveRecord 類和方法,? 現(xiàn)在產(chǎn)生的中間幀會儲存在硬盤上而不是直接放在內(nèi)存上,? 并且暴露里中間把場渲染成圖片的方法: `save_frame`.

仍然, `% 06d` 實際為 `%06d`

上面的視頻使用以下代碼進行模擬:



三維波動方程 & PML 版本

????????因為受限于內(nèi)存以及計算速度等因素,? 三維波動方程就不打算進行實現(xiàn)了 (主要是懶),? 所以干脆在這里把三維的 PML 一起放出了.

????????三維波動方程為?%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20t%5E2%7D%3Dc%5E2%5Cleft(%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x_1%5E2%7D%2B%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x_2%5E2%7D%2B%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x_3%5E2%7D%5Cright).? 為三維的加上 PML 與二維的類似:

首先把波動方程從時域變?yōu)?s 域得 s%5E2%5Cmathcal%20Lu%3Dc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_1%5E2%7D%5Cmathcal%20Lu%2Bc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_2%5E2%7D%5Cmathcal%20Lu%2Bc%5E2%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20x_3%5E2%7D%5Cmathcal%20Lu.

做 PML 變換得 s%5E2%5Cmathcal%20Lu%3D%5Cfrac%7Bc%5E2%7D%7B%5Cgamma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cleft(%5Cfrac1%7B%5Cgamma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5Cright)%2B%5Cfrac%7Bc%5E2%7D%7B%5Cgamma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cleft(%5Cfrac1%7B%5Cgamma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cright)%2B%5Cfrac%7Bc%5E2%7D%7B%5Cgamma_3%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_3%7D%5Cleft(%5Cfrac1%7B%5Cgamma_3%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_3%7D%5Cmathcal%20Lu%5Cright),? 其中 %5Cgamma_k%3A%3D1%2B%5Cfrac%7B%5Csigma_k(x_k)%7D%7Bs%7D.

上式乘以?%5Cgamma_1%5Cgamma_2%5Cgamma_3?得?s%5E2%5Cgamma_1%5Cgamma_2%5Cgamma_3%5Cmathcal%20Lu%3Dc%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cleft(%5Cfrac%7B%5Cgamma_2%5Cgamma_3%7D%7B%5Cgamma_1%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%5Cright)%0A%2Bc%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cleft(%5Cfrac%7B%5Cgamma_1%5Cgamma_3%7D%7B%5Cgamma_2%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%5Cright)%20%2B%0Ac%5E2%5Cfrac%5Cpartial%7B%5Cpartial%20x_3%7D%5Cleft(%5Cfrac%7B%5Cgamma_1%5Cgamma_2%7D%7B%5Cgamma_3%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_3%7D%5Cmathcal%20Lu%5Cright).

計算可得:?s%5E2%5Cgamma_1%5Cgamma_2%5Cgamma_3%3Ds%5E2%2B(%5Csigma_1%2B%5Csigma_2%2B%5Csigma_3)s%2B(%5Csigma_1%5Csigma_2%2B%5Csigma_2%5Csigma_3%2B%5Csigma_3%5Csigma_1)%2B%5Cfrac%7B%5Csigma_1%5Csigma_2%5Csigma_3%7Ds?以及 %5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cgamma_2%5Cgamma_3%7D%7B%5Cgamma_1%7D%3D1%2B%5Cfrac%7B(%5Csigma_2%2B%5Csigma_3-%5Csigma_1)s%2B%5Csigma_2%5Csigma_3%7D%7B(s%2B%5Csigma_1)s%7D%5C%5C%0A%5Cfrac%7B%5Cgamma_1%5Cgamma_3%7D%7B%5Cgamma_2%7D%3D1%2B%5Cfrac%7B(%5Csigma_1%2B%5Csigma_3-%5Csigma_2)s%2B%5Csigma_1%5Csigma_3%7D%7B(s%2B%5Csigma_2)s%7D%5C%5C%5Cfrac%7B%5Cgamma_2%5Cgamma_3%7D%7B%5Cgamma_3%7D%3D1%2B%5Cfrac%7B(%5Csigma_1%2B%5Csigma_2-%5Csigma_3)s%2B%5Csigma_1%5Csigma_2%7D%7B(s%2B%5Csigma_3)s%7D%0A%5Cend%7Bmatrix%7D%5Cright..

引入 4 個新量:?%5Cbegin%7Bmatrix%7D%0A%5Cmathcal%20L%20f%3A%3D%5Cfrac1s%5Cmathcal%20L%20u%5C%5C%0A%5Cmathcal%20L%20v_1%3A%3D%5Cfrac%7B(%5Csigma_2%2B%5Csigma_3-%5Csigma_1)s%2B%5Csigma_2%20%5Csigma_3%7D%7B(s%2B%5Csigma_1)s%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20L%20u%5C%5C%0A%5Cmathcal%20L%20v_2%3A%3D%5Cfrac%7B(%5Csigma_1%2B%5Csigma_3-%5Csigma_2)s%2B%5Csigma_1%20%5Csigma_3%7D%7B(s%2B%5Csigma_2)s%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20L%20u%5C%5C%5Cmathcal%20L%20v_3%3A%3D%5Cfrac%7B(%5Csigma_1%2B%5Csigma_2-%5Csigma_3)s%2B%5Csigma_1%20%5Csigma_2%7D%7B(s%2B%5Csigma_3)s%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x_3%7D%5Cmathcal%20L%20u%0A%5Cend%7Bmatrix%7D,? 即 %5Cbegin%7Bmatrix%7D%0As%5Cmathcal%20L%20f%3D%5Cmathcal%20L%20u%5C%5C%0A(s%2B%5Csigma_1)%5Cmathcal%20L%20v_1%3D(%5Csigma_2%2B%5Csigma_3-%5Csigma_1)%5Cfrac%20%5Cpartial%7B%5Cpartial%20x_1%7D%5Cmathcal%20Lu%2B%5Csigma_2%5Csigma_3%5Cfrac%5Cpartial%7B%5Cpartial%20x_1%7D%20%5Cfrac1s%5Cmathcal%20Lu%5C%5C%0A(s%2B%5Csigma_2)%5Cmathcal%20L%20v_2%3D(%5Csigma_1%2B%5Csigma_3-%5Csigma_2)%5Cfrac%20%5Cpartial%7B%5Cpartial%20x_2%7D%5Cmathcal%20Lu%2B%5Csigma_1%5Csigma_3%5Cfrac%5Cpartial%7B%5Cpartial%20x_2%7D%20%5Cfrac1s%5Cmathcal%20Lu%5C%5C%0A(s%2B%5Csigma_3)%5Cmathcal%20L%20v_3%3D(%5Csigma_1%2B%5Csigma_2-%5Csigma_3)%5Cfrac%20%5Cpartial%7B%5Cpartial%20x_3%7D%5Cmathcal%20Lu%2B%5Csigma_1%5Csigma_1%5Cfrac%5Cpartial%7B%5Cpartial%20x_3%7D%20%5Cfrac1s%5Cmathcal%20Lu%0A%5Cend%7Bmatrix%7D.

把新量代入,? 再轉(zhuǎn)回時域得到?%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20t%5E2%7D%2B(%5Csigma_1%2B%5Csigma_2%2B%5Csigma_3)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20t%7D%3Dc%5E2%5Cleft(%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x_1%5E2%7D%2B%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x_2%5E2%7D%2B%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x_3%5E2%7D%2B%5Cfrac%7B%5Cpartial%20v_1%7D%7B%5Cpartial%20x_1%7D%2B%5Cfrac%7B%5Cpartial%20v_2%7D%7B%5Cpartial%20x_2%7D%2B%5Cfrac%7B%5Cpartial%20v_3%7D%7B%5Cpartial%20x_3%7D%5Cright)-(%5Csigma_1%5Csigma_2%2B%5Csigma_2%5Csigma_3%2B%5Csigma_3%5Csigma_1)u-%5Csigma_1%5Csigma_2%5Csigma_3f?%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20t%7D%3Du,??%5Cbegin%7Bmatrix%7D%0A%5Cfrac%7B%5Cpartial%20v_1%7D%7B%5Cpartial%20t%7D%3D(%5Csigma_2%2B%5Csigma_3-%5Csigma_1)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x_1%7D%2B%5Csigma_2%5Csigma_3%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_1%7D-%5Csigma_1v_1%5C%5C%0A%5Cfrac%7B%5Cpartial%20v_2%7D%7B%5Cpartial%20t%7D%3D(%5Csigma_1%2B%5Csigma_3-%5Csigma_2)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x_2%7D%2B%5Csigma_1%5Csigma_3%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_2%7D-%5Csigma_2v_2%5C%5C%0A%5Cfrac%7B%5Cpartial%20v_3%7D%7B%5Cpartial%20t%7D%3D(%5Csigma_1%2B%5Csigma_2-%5Csigma_3)%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x_3%7D%2B%5Csigma_1%5Csigma_2%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x_3%7D-%5Csigma_3v_3%0A%5Cend%7Bmatrix%7D

這就是三維 PML 波動方程了,? 雖然原理都是一樣的,? 但是這個真的太長了,? debug 十萬年,? 所以就原諒我不去實現(xiàn)了 (



有可能這就是數(shù)值模擬波動方程的最后一篇專欄了,? 雖然最關鍵的還有一個麥克斯韋方程組還沒搞,? 但是上面的標量三維 PML 波動方程都這么復雜了,? 更何況三維 PML 麥克斯韋方程組.

數(shù)值求解波動方程 [5]的評論 (共 條)

分享到微博請遵守國家法律
镇坪县| 武平县| 会同县| 萨嘎县| 永济市| 道真| 梓潼县| 漯河市| 旬阳县| 乌鲁木齐县| 井冈山市| 罗平县| 大冶市| 余干县| 浮山县| 东乡族自治县| 泾川县| 社旗县| 屯昌县| 长武县| 荆门市| 望江县| 巩留县| 新源县| 雅江县| 溧阳市| 巨野县| 邵阳县| 文成县| 理塘县| 梨树县| 介休市| 安塞县| 丰原市| 苗栗市| 阜阳市| 酒泉市| 英山县| 仙桃市| 改则县| 宝应县|