最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

隨便寫寫的復(fù)習(xí)筆記Day1,2022/8/22

2022-08-22 06:44 作者:臥煙鈴  | 我要投稿

隨便寫寫而已,順便鍛煉一下LateX,如果有寫得不對(duì)的地方歡迎各位指出,謝謝

剛剛開始就先復(fù)習(xí)點(diǎn)老得掉牙的題吧

  1. (安徽大學(xué)2005)若%5Clim_%7Bn%5Cto%20%5Cinfty%7Dx_%7Bn%7D%3Da%2C%5Clim_%7Bn%5Cto%5Cinfty%7D%20y%20_%7Bn%7D%3Db%2C%0A

    證明:%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bx_%7B1%7Dy_%7Bn%7D%2Bx_%7B2%7Dy_%7Bn-1%7D%2B%5Ccdots%2Bx_%7Bn%7Dy_%7B1%7D%7D%7Bn%7D%3Dab

    證:

    %5Clim_%7Bn%5Cto%20%5Cinfty%7Dx_%7Bn%7D%3Da%2C%5Clim_%7Bn%5Cto%5Cinfty%7D%20y%20_%7Bn%7D%3Db%0A我們知道%5Cforall%20%5Cvarepsilon%20%3E0分別%5Cexists%20N_%7B1%7D%EF%BC%8CN_%7B2%7D%3E0%2Cst%20%5Cforall%20n%3EN_%7B1%7D%7Cx_%7Bn%7D-a%7C%3C%5Cvarepsilon%5Cforall%20n%3EN_%7B2%7D%EF%BC%8C%7Cy_%7Bn%7D-b%7C%3C%5Cvarepsilon

    我們不妨令N%3DMax%5Cleft%5C%7BN_%7B1%7D%2CN_%7B2%7D%5Cright%5C%7D%2B1

    不妨考慮式子%7C%5Cfrac%7Bx_%7B1%7Dy_%7Bn%7D%2Bx_%7B2%7Dy_%7Bn-1%7D%2B%5Ccdots%2Bx_%7Bn%7Dy_%7B1%7D%7D%7Bn%7D-ab%7C

    簡(jiǎn)單化簡(jiǎn)有%7C%5Cfrac%7Bx_%7B1%7Dy_%7Bn%7D%2Bx_%7B2%7Dy_%7Bn-1%7D%2B%5Ccdots%2Bx_%7Bn%7Dy_%7B1%7D%7D%7Bn%7D-ab%7C

    %3D%7C%5Cfrac%7B(x_%7B1%7Dy_%7Bn%7D-ab)%2B(x_%7B2%7Dy_%7Bn-1%7D-ab)%2B%5Ccdots%2B(x_%7Bn%7Dy_%7B1%7D-ab)%7D%7Bn%7D%7C

    %5Cleq%20%0A%7C%5Cfrac%7B(x_%7B1%7Dy_%7Bn%7D-ab)%7D%7Bn%7D%7C%2B%7C%5Cfrac%7B(x_%7B2%7Dy_%7Bn-1%7D-ab)%7D%7Bn%7D%7C%2B%5Ccdots%2B%7C%5Cfrac%7B(x_%7Bn%7Dy_%7B1%7D-ab)%7D%7Bn%7D%7C%5Cleq%0A%5Cfrac%7B%7Cx_%7B1%7D(y_%7Bn%7D-b)%7C%2B%7Cbx_%7B1%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7B%7Cx_%7B2%7D(y_%7Bn-1%7D-b)%7C%2B%7Cbx_%7B2%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%5Cfrac%7B%7Cx_%7BN%7D(y_%7Bn-N%2B1%7D-b)%7C%2B%7Cbx_%7BN%7D-ab%7C%7D%7Bn%7D%5C%5C%2B%5Cfrac%7B%7Cx_%7BN%2B1%7D(y_%7Bn-N%7D-b)%7C%2B%7Cbx_%7BN%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%2B%5Cfrac%7B%7Cx_%7Bn-N%2B1%7D(y_%7BN%7D-b)%7C%2B%7Cbx_%7Bn-N%2B1%7D-ab%7C%7D%7Bn%7D%5C%5C%2B%5Cfrac%7B%7Cy_%7BN%2B1%7D(x_%7Bn-N%7D-a)%7C%2B%7Cay_%7BN%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%2B%5Cfrac%7B%7Cy_%7B1%7D(x_%7Bn%7D-a)%7C%2B%7Cay_%7B1%7D-ab%7C%7D%7Bn%7D%3C%0A%5Cfrac%7B%7Cx_%7B1%7D%5Cvarepsilon%7C%2B%7Cbx_%7B1%7D-ab%7C%7D%7Bn%7D%7C%2B%5Cfrac%7B%7Cx_%7B2%7D%5Cvarepsilon%7C%2B%7Cbx_%7B2%7D-ab%7C%7D%7Bn%7D%7C%2B%5Ccdots%2B%5Cfrac%7B%7Cx_%7BN%7D%5Cvarepsilon%7C%2B%7Cbx_%7BN%7D-ab%7C%7D%7Bn%7D%7C%2B%5Cfrac%7B%7Cx_%7BN%2B1%7D%5Cvarepsilon%7C%2B%7Cbx_%7BN%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%5C%5C%2B%5Cfrac%7B%7Cx_%7Bn-N%2B1%7D%5Cvarepsilon%7C%2B%7Cbx_%7Bn-N%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7B%7Cy_%7BN%2B1%7D%5Cvarepsilon%7C%2B%7Cay_%7BN%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%2B%5Cfrac%7B%7Cy_%7B1%7D%5Cvarepsilon%7C%2B%7Cay_%7B1%7D-ab%7C%7D%7Bn%7D這里我們不妨令M%3DMax%5Cleft%5C%7B%7Cx_%7Bn%7D%7C%2C%7Cy_%7Bn%7D%7C%5Cright%5C%7D_%7Bn%3D1%2C2%2C%5Cldots%2Cn%7D

    于是

    %7C%5Cfrac%7Bx_%7B1%7Dy_%7Bn%7D%2Bx_%7B2%7Dy_%7Bn-1%7D%2B%5Ccdots%2Bx_%7Bn%7Dy_%7B1%7D%7D%7Bn%7D-ab%7C

    %3C%0A%5Cfrac%7B%7Cbx_%7B1%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7B%7Cbx_%7B2%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%2B%5Cfrac%7B%7Cbx_%7BN%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7B%7Cbx_%7BN%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%5C%5C%2B%5Cfrac%7B%7Cbx_%7Bn-N%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7B%7Cay_%7BN%2B1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%2B%5Cfrac%7B%7Cay_%7B1%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7BnM%5Cvarepsilon%7D%7Bn%7D%3C%0A%5Cfrac%7B%7Cbx_%7B1%7D-ab%7C%7D%7Bn%7D%7C%2B%5Cfrac%7B%7Cbx_%7B2%7D-ab%7C%7D%7Bn%7D%7C%2B%5Ccdots%2B%5Cfrac%7B%7Cbx_%7BN-1%7D-ab%7C%7D%7Bn%7D%5C%5C%2B%5Cfrac%7B%7Cay_%7BN-1%7D-ab%7C%7D%7Bn%7D%2B%5Ccdots%2B%5Cfrac%7B%7Cay_%7B1%7D-ab%7C%7D%7Bn%7D%2B%5Cfrac%7BnM%5Cvarepsilon%7D%7Bn%7D%2B%5Cfrac%7Bb(n-2N)%5Cvarepsilon%2B2a%5Cvarepsilon%7D%7Bn%7D又令P%3DMax%5Cleft%5C%7B%7Cx_%7Bn%7D-a%7C%2C%7Cy_%7Bn%7D-b%7C%5Cright%5C%7D_%7Bn%3D1%2C2%2C%E2%80%A6%2CN-1%7D

%7C%5Cfrac%7Bx_%7B1%7Dy_%7Bn%7D%2Bx_%7B2%7Dy_%7Bn-1%7D%2B%5Ccdots%2Bx_%7Bn%7Dy_%7B1%7D%7D%7Bn%7D-ab%7C

%3C%0A%5Cfrac%7BnM%5Cvarepsilon%7D%7Bn%7D%2B%5Cfrac%7Bb(n-2N)%5Cvarepsilon%2B2a%5Cvarepsilon%7D%7Bn%7D%2B%5Cfrac%7B(a%2Bb)P(N-1)%7D%7Bn%7D

于是便容易得知%5Cforall%20%5Cvarepsilon_%7B2%7D%3E0%EF%BC%8C%5Cexists%20G%3E0%2Cst%5C%20%5Cforall%20n%3E0

成立。

2.設(shè)dim_%7BF%7DV%3Dn%2C%5Csigma%20%5Cin%20End%20V,證明:

%5Csigma%5E%7Bn-1%7D%5Cneq0%EF%BC%8C%5Csigma%5E%7Bn%7D%3D0%2C則V只有n+1個(gè)%5Csigma-不變子空間

證:

i)由dim_%7BF%7DV%3Dn%5Csigma%5E%7Bn-1%7D%5Cneq0%EF%BC%8C%5Csigma%5E%7Bn%7D%3D0%2C我們得知%5Csigma%0A的特征多項(xiàng)式為f_%7B%5Csigma%7D(%5Clambda)%3D%5Clambda%5E%7Bn%7D

于是我們得知%5Csigma%0A的所有特征值都是0,而我們?nèi)菀字?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=ker%5Csigma%3D%5Cleft%5C%7B%5Csigma%5E%7Bn-1%7D%5Calpha%7C%5Cforall%5C%20%5Calpha%20%5Cin%20V%5Cright%5C%7D" alt="ker%5Csigma%3D%5Cleft%5C%7B%5Csigma%5E%7Bn-1%7D%5Calpha%7C%5Cforall%5C%20%5Calpha%20%5Cin%20V%5Cright%5C%7D">,我們不妨構(gòu)造線性空間W_i%3D%5Cleft%5C%7B%5Csigma%5E%7Bi%7Dv%7C%5Cforall%20v%5Cin%20V%20%5Cright%5C%7D%2Ci%3D0%2C1%2C%5Cldots%2Cn%EF%BC%8C(W_%7B0%7D%3DV)%0A%E5%85%B6%E4%B8%AD0%5Cin%20W_i

我們易知%5Csigma%5E%7Bm%7Dw%3D0%5Ciff%20w%5Cin%20W_%7Bi%7D%2Ci%5Cgeq%20n-m,任取%5Calpha%5Cin%20W_%7Bi%7D于是我們令%5Cbeta%3D%5Csigma%5Calpha,則有m%5Cgeq%20n-i%EF%BC%8C%5Csigma%5E%7Bm%7D%CE%B2%3D%5Csigma%5E%7Bm%2B1%7D%5Calpha%3D0,

所以線性空間W_i%3D%5Cleft%5C%7B%5Csigma%5E%7Bi%7Dv%7C%5Cforall%20v%5Cin%20V%20%5Cright%5C%7D%2Ci%3D0%2C1%2C%5Cldots%2Cn%EF%BC%8C(W_%7B0%7D%3DV)%0A都是%5Csigma-不變子空間,而我們也容易知道W_n%3CW_%7Bn-1%7D%3C%5Cldots%3CW_1%3CV%0A

? ? ?而不妨再假設(shè)存在W_i以外的不變子空間U%5C%20st%20%5C%20%5Cforall%20u%5Cin%20W'%2C%5Csigma%20u%20%5Cin%20W'成立

dim_%7BF%7DV%3Dn,且W_n%3CW_%7Bn-1%7D%3C%5Cldots%3CW_1%3CV%0A我們可以知道

dimW_n%3CdimW_%7Bn-1%7D%3C%5Cldots%3CdimW_1%3CdimV%3Dn%0A

于是dimW_i%3Dn-i%EF%BC%8Ci%3D1%2C2%2C%5Ccdots%2Cn%0A

由于n-1%3DdimW_1%3CdimV%3Dn%0A

于是我們有%5Cforall%20%5Calpha%5Cin%20V%5Ccap%20W_1%EF%BC%8C%5Csigma%5En%5Calpha%3D0%EF%BC%8C%5Csigma%5E%7Bn-1%7D%5Calpha%5Cneq0

所以不妨令U%3D%5BV%5Ccap%20W_1%5D%5Ccup%20%5Cleft%5C%7B0%5Cright%5C%7D

于是dim%20U%3D1%2Cand%20%EF%BC%8C%5Cforall%20%5Calpha%20%5Cin%20U%2C%5Calpha%5Cneq0%2C%5Cforall%20k%5Cin%20F%2C%5Csigma%5Enk%5Calpha%3D0%2C%5Csigma%5E%7Bn-1%7Dk%5Calpha%5Cneq0

我們不妨取一個(gè)%20%5Cbeta%20%5Cin%20U,構(gòu)造向量組%5Cbeta%2C%5Csigma%5Cbeta%2C%5Csigma%5E2%5Cbeta%2C%5Cldots%2C%5Csigma%5E%7Bn-1%7D%5Cbeta

設(shè)存在一組數(shù)k_0%2Ck_1%2C%5Cldots%2Ck_%7Bn-1%7D%5Cin%20F%2Cst%20%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7Dk_i%5Csigma%5E%7Bi%7D%5Cbeta%3D0

%5Csigma%5Ej%20%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7Dk_i%5Csigma%5E%7Bi%7D%5Cbeta%3D%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7Dk_i%5Csigma%5E%7Bi%2Bj%7D%5Cbeta%3D0%2Cj%3D1%2C2%2C%5Cldots%2Cn-1

我們可以得到

%5Csum_%7Bi%3D0%7D%5E%7Bn-j-1%7Dk_i%5Csigma%5E%7Bi%2Bj%7D%5Cbeta%3D0%2Cj%3D1%2C2%2C%5Cldots%2Cn-1

當(dāng)j%3Dn-1%EF%BC%8C%E6%9C%89%5Csum_%7Bi%3D0%7D%5E%7Bn-j-1%7Dk_i%5Csigma%5E%7Bi%2Bj%7D%5Cbeta%3Dk_0%5Csigma%5E%7Bn-1%7D%5Cbeta%3D0

當(dāng)j%3Dn-2%EF%BC%8C%E6%9C%89%5Csum_%7Bi%3D0%7D%5E%7Bn-j-1%7Dk_i%5Csigma%5E%7Bi%2Bj%7D%5Cbeta%3D0%2Bk_1%5Csigma%5E%7Bn-1%7D%5Cbeta%3D0

以此類推得到

k_0%3Dk_1%3D%5Cldots%3Dk_%7Bn-1%7D%3D0

所以向量組%5Cbeta%2C%5Csigma%5Cbeta%2C%5Csigma%5E2%5Cbeta%2C%5Cldots%2C%5Csigma%5E%7Bn-1%7D%5Cbeta線性無(wú)關(guān),所以向量組%5Cbeta%2C%5Csigma%5Cbeta%2C%5Csigma%5E2%5Cbeta%2C%5Cldots%2C%5Csigma%5E%7Bn-1%7D%5Cbeta是V的一組基

%5Cforall%20%5Calpha%20%5Cin%20V%2C%5Cexists%20k_0%2Ck_1%2C%5Cldots%2Ck_%7Bn-1%7D%5Cin%20F%2Cst%5C%20%5Calpha%3D%20%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7Dk_i%5Csigma%5E%7Bi%7D%5Cbeta

于是我們不妨假設(shè)

%5Cforall%20%5Calpha%20%5Cin%20W'%2C%5Cexists%20k_0%2Ck_1%2C%5Cldots%2Ck_%7Bn-1%7D%5Cin%20F%2Cst%5C%20%5Calpha%3D%20%5Csum_%7Bi%3D0%7D%5E%7Bp%7Dk_i%5Csigma%5E%7Bi%7D%5Cbeta%EF%BC%8Cn-1%5Cgeq%20p%5Cgeq0

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Csigma%20%5Calpha%20%5Cin%20W'" alt="%5Csigma%20%5Calpha%20%5Cin%20W'">所以%5Csum_%7Bi%3D0%7D%5E%7Bp%7Dk_i%5Csigma%5E%7Bi%2B1%7D%5Cbeta%5Cin%20W'所以%5Csigma%20%5Calpha%2C%5Csigma%5E2%20%5Calpha%2C%5Cldots%2C%5Csigma%5E%7Bn-p-1%7D%20%5Calpha%20%5Cin%20W'

且我們有%5Csigma%5E%7Bm%7D%20%5Calpha%20%3D0%EF%BC%8Cm%5Cgeq%20n-p,所以W'%5Csubseteq%20W_p

而由于%5Csum_%7Bi%3D0%7D%5E%7Bp%7Dk_i%5Csigma%5E%7Bi%2Bj%7D%5Cbeta%5Cin%20W'%EF%BC%8C0%5Cleq%20j%5Cleq%20n-p-1

我們便容易知道%5Cbeta%2C%5Csigma%5Cbeta%2C%5Csigma%5E2%5Cbeta%2C%5Cldots%2C%5Csigma%5E%7Bp%7D%5Cbeta%5Cin%20W'

所以span%5Cleft%5C%7B%5Cbeta%2C%5Csigma%5Cbeta%2C%5Csigma%5E2%5Cbeta%2C%5Cldots%2C%5Csigma%5E%7Bp%7D%5Cbeta%5Cright%5C%7D%5Csubseteq%20%20W'于是W'%3DW_p

所以W_i%3D%5Cleft%5C%7B%5Csigma%5E%7Bi%7Dv%7C%5Cforall%20v%5Cin%20V%20%5Cright%5C%7D%2Ci%3D0%2C1%2C%5Cldots%2Cn%EF%BC%8C(W_%7B0%7D%3DV)%0A%E5%85%B6%E4%B8%AD0%5Cin%20W_i是所有的%5Csigma-不變子空間。

隨便寫寫的復(fù)習(xí)筆記Day1,2022/8/22的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
方城县| 手机| 永春县| 革吉县| 永寿县| 南召县| 灌云县| 封丘县| 商丘市| 临海市| 周至县| 镶黄旗| 连江县| 祁门县| 岐山县| 隆德县| 巴马| 渝北区| 建德市| 廊坊市| 正蓝旗| 张家界市| 姚安县| 荔波县| 巴里| 依兰县| 临清市| 石屏县| 柞水县| 遂平县| 新安县| 丽江市| 曲阳县| 汪清县| 滦南县| 奇台县| 积石山| 丹巴县| 通江县| 大安市| 富宁县|