【標(biāo)題速讀】【nbt】【2023年】【1-4月】

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。
1.SARS-CoV-2–human protein–protein interactome. Rendering of complexes between SARS-CoV-2 and human proteins, with interface mutations highlighted. Zhou et al. and Kim et al. generate protein–protein interaction maps providing insights for potential therapeutic targets.
SARS-CoV-2-人類蛋白質(zhì)-蛋白質(zhì)相互作用組。?SARS-CoV-2 和人類蛋白質(zhì)之間的復(fù)合物渲染,突出顯示了界面突變。周和金等人生成蛋白質(zhì)-蛋白質(zhì)相互作用圖,為潛在的治療靶點(diǎn)提供見解。

2.Prediction of peptide mass spectral libraries with machine learning.
通過機(jī)器學(xué)習(xí)預(yù)測(cè)肽質(zhì)譜庫。
3.Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations.
通過學(xué)習(xí)稀疏注釋自動(dòng)重建全胚胎細(xì)胞譜系。
4.Increasing the throughput of sensitive proteomics by plexDIA.
通過 plexDIA 提高敏感蛋白質(zhì)組學(xué)的通量。
5.Uncovering the mode of action of engineered T cells in patient cancer organoids.
揭示工程 T 細(xì)胞在患者癌癥類器官中的作用模式。
6.Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts.
生物工程角膜組織用于兩個(gè)臨床隊(duì)列中晚期圓錐角膜的微創(chuàng)視力恢復(fù)。
7.Removing unwanted variation from large-scale RNA sequencing data with PRPS.
使用 PRPS 消除大規(guī)模 RNA 測(cè)序數(shù)據(jù)中不需要的變異。
8.High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs.
針對(duì)單核苷酸嘧啶 PAM 的緊湊型 Cas9 變體的高通量連續(xù)進(jìn)化。
9.High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects.
高保真 Cas13 變體用于靶向 RNA 降解,且附帶影響最小。
10.The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize.
轉(zhuǎn)座子反向重復(fù)序列在平衡玉米耐旱性和產(chǎn)量相關(guān)性狀中的作用。
11.A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets.
全面的 SARS-CoV-2-人類蛋白質(zhì)-蛋白質(zhì)相互作用組揭示了 COVID-19 病理學(xué)和潛在的宿主治療靶點(diǎn)。
12.A proteome-scale map of the SARS-CoV-2–human contactome.
SARS-CoV-2-人類接觸組的蛋白質(zhì)組規(guī)模圖。
==========================================
1.Synthetic circRNA optimization. Circular RNA expression is affected by factors such as the placement of specific untranslated region and internal ribosome entry site features. Chen et. al. engineer and optimize synthetic circRNAs to allow robust translation of therapeutic proteins such as human erythropoietin.
合成 circRNA 優(yōu)化。環(huán)狀RNA的表達(dá)受特定非翻譯區(qū)的位置和內(nèi)部核糖體進(jìn)入位點(diǎn)特征等因素的影響。陳等人設(shè)計(jì)和優(yōu)化合成的 circRNA,以實(shí)現(xiàn)治療性蛋白質(zhì)(例如人類血清蛋白)的穩(wěn)健翻譯。

2.A competitive precision CRISPR method to identify the fitness effects of transcription factor binding sites.
一種有競(jìng)爭(zhēng)力的精確 CRISPR 方法,用于識(shí)別轉(zhuǎn)錄因子結(jié)合位點(diǎn)的適應(yīng)性效應(yīng)。
3.Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing.
主要是使用 Ultima 測(cè)序?qū)?scRNA-seq 進(jìn)行自然合成測(cè)序。
4.Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics.
用于癌癥診斷的血漿分離核小體的多重、單分子表觀遺傳學(xué)分析。
5.Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH.
使用 EEL FISH 通過電泳捕獲 mRNA 進(jìn)行可擴(kuò)展的原位單細(xì)胞分析。
6.DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer.
DeepConsensus 通過間隙感知序列轉(zhuǎn)換器提高了序列的準(zhǔn)確性。
7.Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors.
翻譯后修飾重塑了腫瘤中 MHC I 免疫肽組的抗原景觀。
8.Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types.
人輸尿管芽類器官再現(xiàn)了分支形態(tài)發(fā)生并分化為功能性集合管細(xì)胞類型。
9.Engineering circular RNA for enhanced protein production.
工程化環(huán)狀 RNA 以增強(qiáng)蛋白質(zhì)產(chǎn)量。
10.Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins.
模塊化細(xì)胞因子受體靶向嵌合體,用于細(xì)胞表面和細(xì)胞外蛋白的靶向降解。
11.Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit.
實(shí)時(shí)降噪可實(shí)現(xiàn)超出散粒噪聲限制的高靈敏度熒光延時(shí)成像。
==========================================
1.Super-resolution imaging. Artistic rendering of a system for noise reduction in super-resolution images. Qiao et al. incorporate prior knowledge of illumination patterns into a deep learning algorithm and apply this method to sustained live cell imaging.
超分辨率成像。超分辨率圖像降噪系統(tǒng)的藝術(shù)渲染。喬等人將照明模式的先驗(yàn)知識(shí)融入深度學(xué)習(xí)算法中,并將該方法應(yīng)用于持續(xù)的實(shí)時(shí)活細(xì)胞成像。

2.Modeling intercellular communication in tissues using spatial graphs of cells.
使用細(xì)胞空間圖對(duì)組織中的細(xì)胞間通訊進(jìn)行建模。
3.Engineered CRISPR prime editors with compact, untethered reverse transcriptases.
具有緊湊、不受束縛的逆轉(zhuǎn)錄酶的工程化 CRISPR prime 編輯器。
4.Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution.
使用 BID-seq 的定量測(cè)序以堿基分辨率揭示了哺乳動(dòng)物 mRNA 中豐富的假尿苷。
5.Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI.
使用 GLORI 對(duì)哺乳動(dòng)物轉(zhuǎn)錄組中單堿基 m6A 甲基化進(jìn)行絕對(duì)定量。
6.Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes.
合理化深度學(xué)習(xí)超分辨率顯微鏡,用于快速亞細(xì)胞過程的持續(xù)實(shí)時(shí)成像。
7.Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.
使用高保真 DddA 衍生堿基編輯器進(jìn)行精確線粒體 DNA 編輯。
8.Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction.
多組學(xué)單細(xì)胞速度模擬表觀基因組-轉(zhuǎn)錄組相互作用并改善細(xì)胞命運(yùn)預(yù)測(cè)。
9.Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models.
通過生成深度學(xué)習(xí)模型發(fā)現(xiàn) 2 型糖尿病的藥物組學(xué)關(guān)聯(lián)。
10.Precise DNA cleavage using CRISPR-SpRYgests.
使用 CRISPR-SpRYgests 精確切割 DNA。
11.Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes.
單細(xì)胞轉(zhuǎn)錄組體細(xì)胞拷貝數(shù)變異的單倍型感知分析。
==========================================
1.Fluorescence microscopy. Artistic rendering of nucleosomes labeled with a reversibly switchable green fluorescent protein and portrayed as spinning tops on a plate. Volpato et al. developed a method that extends fluorescence anisotropy measurements to large protein complexes.
熒光顯微鏡。用可逆可切換綠色熒光蛋白標(biāo)記的核小體的藝術(shù)渲染,并被描繪成板上的旋轉(zhuǎn)陀螺。沃爾帕托等人。開發(fā)了一種將熒光各向異性測(cè)量擴(kuò)展到大型蛋白質(zhì)復(fù)合物的方法。

2.Modular, programmable RNA sensing using ADAR editing in living cells.
在活細(xì)胞中使用 ADAR 編輯的模塊化、可編程 RNA 傳感。
3.Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome.
系統(tǒng)地發(fā)現(xiàn)重組酶,用于將大 DNA 序列有效整合到人類基因組中。
4.Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.
使用 CRISPR 引導(dǎo)的整合酶拖放大序列的基因組插入,無需雙鏈 DNA 切割。
5.Spatial mapping of the total transcriptome by in situ polyadenylation.
通過原位聚腺苷酸化對(duì)總轉(zhuǎn)錄組進(jìn)行空間定位。
6.High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails.
使用混合 ssDNA 修復(fù)模板和小分子混合物在原代細(xì)胞中進(jìn)行高產(chǎn)基因組工程。
7.A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy.
IL-2 的分裂、條件活性模擬物可降低全身細(xì)胞因子治療的毒性。
8.Targeting MYC with modular synthetic transcriptional repressors derived from bHLH DNA-binding domains.
使用源自 bHLH DNA 結(jié)合域的模塊化合成轉(zhuǎn)錄阻遏物靶向 MYC。
9.Extending fluorescence anisotropy to large complexes using reversibly switchable proteins.
使用可逆可切換蛋白質(zhì)將熒光各向異性擴(kuò)展到大型復(fù)合物。
10.An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts.
一種工程 T7 RNA 聚合酶,可產(chǎn)生不含免疫刺激副產(chǎn)物的 mRNA。
11.MINSTED nanoscopy enters the ?ngstr?m localization range.
MINSTED 納米顯微鏡進(jìn)入 ?ngstr?m 定位范圍。