Path Integral for Bosons & Fermions
需要讀者有量子力學(xué)中虛時(shí)路徑積分的基礎(chǔ)、以及關(guān)于Grassmann代數(shù)的知識(shí)!
如果你不知道這些,只在QM里學(xué)過(guò)怎么把單粒子的傳播子寫(xiě)成路徑積分,很簡(jiǎn)單:配分函數(shù)里的Boltzmann因子長(zhǎng)的和時(shí)間演化算符像吧,只要做一個(gè)Wick轉(zhuǎn)動(dòng)(把時(shí)間延拓到虛軸),然后重復(fù)你對(duì)于傳播子的所有trick,就行了。
這一章用一個(gè)統(tǒng)一的方式—相干態(tài)表象—構(gòu)建了費(fèi)米場(chǎng)和玻色場(chǎng)的路徑積分形式。后一章對(duì)于自旋系統(tǒng)的路徑積分,類似地,會(huì)定義一個(gè)自旋相干態(tài)。














標(biāo)簽: