最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

二階遞推數(shù)列整理

2021-03-21 01:08 作者:Cuprate  | 我要投稿

章前置芝士:數(shù)列、不動(dòng)點(diǎn)、特征方程

在教輔中看到幾道不錯(cuò)的題目,先暫且記錄下來

關(guān)于二階遞推式變式轉(zhuǎn)換(與下文例題無關(guān))


轉(zhuǎn)換1:

a_%7Bn%2B2%7D%3Dp*a_%7Bn%2B1%7D%2Bq*a_n%5Crightarrow%20a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3Da*b%5En(p%2Cq%5Cneq0)

證明:

%5Cbecause%20p*a_%7Bn%2B1%7D%3Da_%7Bn%2B2%7D-q*a_n%2Cp*a_%7Bn%2B2%7D%3Da_%7Bn%2B3%7D-q*a_%7Bn%2B1%7D

%5Ctherefore%20p*a_%7Bn%2B1%7D*(a_%7Bn%2B3%7D-q*a_%7Bn%2B1%7D)%3Dp*a_%7Bn%2B2%7D*(a_%7Bn%2B2%7D-q*a_n)

%5Cbecause%20p%5Cneq0

%5Cthereforea_%7Bn%2B2%7D%5E2-a_%7Bn%2B3%7D*a_%7Bn%2B1%7D%3D(-q)(a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n)

%5Ctherefore%20a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3D(-q)%5E%7Bn-1%7D(a_2%5E2-a_3*a_1)

%5Cquad%3D%5Cfrac%7B1%7D%7Bq%7D(q*a_1%5E2%2Bp*a_2a_1-a_2%5E2)(-q)%5En


轉(zhuǎn)換2:a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3Da*b%5En%5Crightarrow%20a_%7Bn%2B2%7D%3Dp*a_%7Bn%2B1%7D%2Bq*a_n%20(%5Cforall%20n%5Cin%20N%5E*%2Ca_n%5Cneq0)

證明:

%5Cbecause%20a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n%3Da*b%5En%2Ca_%7Bn%2B2%7D%5E2-a_%7Bn%2B3%7D*a_%7Bn%2B1%7D%3Da*b%5E%7Bn%2B1%7D

%5Ctherefore%20a_%7Bn%2B2%7D%5E2-a_%7Bn%2B3%7D*a_%7Bn%2B1%7D%3Db(a_%7Bn%2B1%7D%5E2-a_%7Bn%2B2%7D*a_n)

%5Cquad%20a_%7Bn%2B2%7D*(a_%7Bn%2B2%7D%2Bb*a_%7Bn%7D)%3Da_%7Bn%2B1%7D*(a_%7Bn%2B3%7D%2Bb*a_%7Bn%2B1%7D)

%5Cbecause%20%5Cforall%20n%5Cin%20N%5E*%2Ca_n%5Cneq0

%5Ctherefore%5Cfrac%7Ba_%7Bn%2B3%7D%2Bb*a_%7Bn%2B1%7D%7D%7Ba_%7Bn%2B2%7D%7D%3D%5Cfrac%7Ba_%7Bn%2B2%7D%2Bb*a_n%7D%7Ba_%7Bn%2B1%7D%7D

%5Ctherefore%5Cfrac%7Ba_%7Bn%2B2%7D%2Bb*a_n%7D%7Ba_%7Bn%2B1%7D%7D%3D%5Cfrac%7Ba_3%2Bb*a_1%7D%7Ba_2%7D

%5Cbecause%20a_3%3D%5Cfrac%7Ba_2%5E2-ab%7D%7Ba_1%7D

%5Ctherefore%5Cfrac%7Ba_3%2Bb*a_1%7D%7Ba_2%7D%3D%5Cfrac%7Ba_2%5E2%2Bb*a_1%5E2-ab%7D%7Ba_1a_2%7D

%5Ctherefore%20a_%7Bn%2B2%7D%3D%5Cfrac%7Ba_2%5E2%2Bb*a_1%5E2-ab%7D%7Ba_1a_2%7Da_%7Bn%2B1%7D-ba_n


例題1:a_1%3Da_2%3D1%2Ca_%7Bn%2B2%7D%3D3a_%7Bn%2B1%7D%2B18a_n-2*5%5En,求a_n


例題2:a_1%3D1%2Ca_2%3D2%2Ca_%7Bn%2B2%7D%3D7a_%7Bn%2B1%7D-a_n,證明a_na_%7Bn%2B1%7D-1是完全平方數(shù)


例題3:a_1%3Da_2%3Da_3%3D1%2Ca_%7Bn%2B3%7D%3D%5Cfrac%7Ba_%7Bn%2B2%7D*a_%7Bn%2B1%7D%2Bk%7D%7Ba_%7Bn%7D%7D(k%3E0)

(1)2a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D

(2)(k%2B2)a_%7B2n%2B1%7D%5E2%2Bk%3D2a_%7B2n%2B2%7D*a_%7B2n%7D%2C2a_%7B2n%7D%5E2%2Bk%3D(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D

(3)a_n



例題1解答:

先忽略2*5%5En項(xiàng),用特征方程x%5E2-3x-18%3D0得特征根%5Clambda_1%3D6%2C%5Clambda_2%3D-3

將原遞推式轉(zhuǎn)化為a_%7Bn%2B2%7D%2B3a_%7Bn%2B1%7D%2BA*5%5E%7Bn%2B1%7D%3D6(a_%7Bn%2B1%7D%2B3a_n%2BA*5%5En)

待定系數(shù)得A%3D-2

%5Cbecause%20a_2%2B3*a_1-10%3D-6

%5Ctherefore%20a_%7Bn%2B1%7D%2B3a_n-2*5%5En%3D-6%5En

同理,將遞推式轉(zhuǎn)化為a_%7Bn%2B1%7D%2BB_1*5%5E%7Bn%2B1%7D%2BB_2*6%5E%7Bn%2B1%7D%3D-3(a_n%2BB_1*5%5En%2BB_2*6%5En)

待定系數(shù)得B_!%3D-%5Cfrac%7B1%7D%7B4%7D%2CB_2%3D%5Cfrac%7B1%7D%7B9%7D

%5Cbecause%20a_1-%5Cfrac%7B5%7D%7B4%7D%2B%5Cfrac%7B6%7D%7B9%7D%3D%5Cfrac%7B5%7D%7B12%7D

%5Ctherefore%20a_n%3D%5Cfrac%7B5%5En%7D%7B4%7D-%5Cfrac%7B6%5En%7D%7B9%7D-%5Cfrac%7B5(-3)%5En%7D%7B36%7D



例題2解答:

a_%7Bn%2B2%7D%3D7a_%7Bn%2B1%7D-a_n(a_%7Bn%2B2%7D-a_n)(a_%7Bn%2B2%7D-7a_%7Bn%2B1%7D%2Ba_n)%3D0

整理得a_%7Bn%2B2%7D%5E2-7a_%7Bn%2B2%7Da_%7Bn%2B1%7D%3Da_n%5E2-7a_na_%7Bn%2B1%7D

等號兩邊同加a_%7Bn%2B1%7D%5E2a_%7Bn%2B2%7D%5E2%2Ba_%7Bn%2B1%7D%5E2-7a_%7Bn%2B2%7Da_%7Bn%2B1%7D%3Da_%7Bn%2B1%7D%5E2%2Ba_n%5E2-7a_na_%7Bn%2B1%7D

%5Ctherefore%20a_%7Bn%2B1%7D%5E2%2Ba_n%5E2-7a_na_%7Bn%2B1%7D%3Da_2%5E2%2Ba_1%5E2-7a_2a_1%3D-9

%5Ctherefore%20(a_%7Bn%2B1%7D%2Ba_n)%5E2%3D9(a_%7Bn%2B1%7Da_n-1),a_%7Bn%2B1%7Da_n-1是完全平方數(shù)



例題3簡答:

(1)a_4%3D%5Cfrac%7Ba_3*a_2%2Bk%7D%7Ba_1%7D%3Dk%2B1

%5Cbecause%20a_%7Bn%2B3%7D*a_n-a_%7Bn%2B2%7D*a_%7Bn%2B1%7D%3Dk%3Da_%7Bn%2B4%7D*a_%7Bn%2B1%7D-a_%7Bn%2B3%7D*a_%7Bn%2B2%7D

%5Ctherefore%20a_%7Bn%2B1%7D*(a_%7Bn%2B4%7D%2Ba_%7Bn%2B2%7D)%3Da_%7Bn%2B3%7D*(a_%7Bn%2B2%7D%2Ba_n)

%5Cquad%5Cfrac%7Ba_%7Bn%2B4%7D%2Ba_%7Bn%2B2%7D%7D%7Ba_%7Bn%2B3%7D%7D%3D%5Cfrac%7Ba_%7Bn%2B2%7D%2Ba_n%7D%7Ba_%7Bn%2B1%7D%7D(n%5Cin%20N%5E*)

%5Ctherefore%5Cfrac%7Ba_%7B2n%2B1%7D%2Ba_%7B2n-1%7D%7D%7Ba_%7B2n%7D%7D%3D%5Cfrac%7Ba_%7B2n-1%7D%2Ba_%7B2n-3%7D%7D%7Ba_%7B2n-2%7D%7D%3D...%3D%5Cfrac%7Ba_3%2Ba_1%7D%7Ba_2%7D%3D2

%5Cquad%5Cfrac%7Ba_%7B2n%2B2%7D%2Ba_%7B2n%7D%7D%7Ba_%7B2n%2B1%7D%7D%3D%5Cfrac%7Ba_%7B2n%7D%2Ba_%7B2n-2%7D%7D%7Ba_%7B2n-1%7D%7D%3D...%3D%5Cfrac%7Ba_4%2Ba_2%7D%7Ba_3%7D%3Dk%2B2

%5Ctherefore2a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D%20(n%5Cin%20N%5E*)


(2)2(k%2B2)a_%7B2n%7D*a_%7B2n%2B1%7D%3D2(k%2B2)a_%7B2n%2B1%7D*a_%7B2n%7D

%5Cbecause2a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D

%5Ctherefore(k%2B2)a_%7B2n%2B1%7D*(a_%7B2n%2B1%7D%2Ba_%7B2n-1%7D)%3D2a_%7B2n%7D*(a_%7B2n%2B2%7D*a_%7B2n%7D)

整理得2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%3D(k%2B2)a_%7B2n%2B1%7D%5E2-a_%7B2n%2B2%7D*a_%7B2n%7D(n%5Cin%20N%5E*)

同理,可由2(k%2B2)a_%7B2n%2B1%7D*a_%7B2n%2B2%7D%3D2(k%2B2)a_%7B2n%2B2%7D*a_%7B2n%2B1%7D推得

2a_%7B2n%2B2%7D%5E2-(k%2B2)a_%7B2n%2B3%7D*a_%7B2n%2B1%7D%3D(k%2B2)a_%7B2n%2B1%7D%5E2-a_%7B2n%2B2%7D*a_%7B2n%7D

%5Ctherefore2a_%7B2n%2B2%7D%5E2-(k%2B2)a_%7B2n%2B3%7D*a_%7B2n%2B1%7D%3D2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D

%5Ctherefore2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%3D2a_%7B2n-2%7D%5E2-(k%2B2)a_%7B2n-1%7D*a_%7B2n-3%7D%3D...%3D2a_2%5E2-(k%2B2)a_3*a_1%3D-k

%5Cquad(k%2B2)a_%7B2n%2B1%7D%5E2-a_%7B2n%2B2%7D*a_%7B2n%7D%3D2a_%7B2n%7D%5E2-(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%3D-k

%5Ctherefore(k%2B2)a_%7B2n%2B1%7D%5E2%2Bk%3D2a_%7B2n%2B2%7D*a_%7B2n%7D%2C2a_%7B2n%7D%5E2%2Bk%3D(k%2B2)a_%7B2n%2B1%7D*a_%7B2n-1%7D%20(n%5Cin%20N%5E*)


(3)%5Cbecause%202a_%7B2n%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B1%7D%2C(k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n%2B2%7D%2Ba_%7B2n%7D%20(n%5Cin%20N%5E*)

%5Ctherefore2(k%2B2)a_%7B2n%2B2%7D%3D(k%2B2)a_%7B2n%2B1%7D%2B(k%2B2)a_%7B2n%2B3%7D%3Da_%7B2n%7D%2B2a_%7B2n%2B2%7D%2Ba_%7B2n%2B4%7D

%5Cquad(2k%2B2)a_%7B2n%2B2%7D%3Da_%7B2n%7D%2Ba_%7B2n%2B4%7D

同理,(2k%2B2)a_%7B2n%2B1%7D%3Da_%7B2n-1%7D%2Ba_%7B2n%2B3%7D

%5Ctherefore%20(2k%2B2)a_%7Bn%2B2%7D%3Da_%7Bn%2B4%7D%2Ba_n%20(n%5Cin%20N%5E*)

不妨設(shè)b_n%3Da_%7B2n-1%7D(n%5Cin%20N%5E*)

b_%7Bn%2B2%7D-(2k%2B2)b_%7Bn%2B1%7D%2Bb_n%3D0對應(yīng)特征方程%5Clambda%5E2-(2k%2B2)%5Clambda%2B1%3D0

%5CDelta%3D(2k%2B2)%5E2-4%3D4k%5E2%2B8k

%5Cbecause%20k%3E0

%5Ctherefore%5CDelta%3E0

特征根%5Clambda_1%3Dk%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D%2C%5Clambda_2%3Dk%2B1-%5Csqrt%7Bk%5E2%2B2k%7D%2C%5Clambda_1%3E%5Clambda_2%3E0

%5Ctherefore%20b_n%3Dc_1*(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5En%2Bc_2*(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5En

b_1%3Db_2%3D1聯(lián)立方程

%5Cbegin%7Bcases%7D(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)*c_1%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)*c_2%3D1%20%5C%5C(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E2*c_1%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E2*c_2%3D1%5Cend%7Bcases%7D

解得%5Cbegin%7Bcases%7Dc_1%3D%5Cfrac%7B1%7D%7B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)*(k%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D)%7D%20%5C%5Cc_2%3D%5Cfrac%7B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E2%7D%7Bk%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D%7D%5Cend%7Bcases%7D

%5Ctherefore%20b_n%3D%5Cfrac%7B1%7D%7Bk%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D%7D%5B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7Bn-1%7D%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7Bn-2%7D%5D(n%5Cin%20N%5E*)

同理,可設(shè)d_n%3Da_%7B2n%7D(n%5Cin%20N%5E*)

%5Ctherefore%20a_n%3D%5Cbegin%7Bcases%7D%5Cfrac%7B1%7D%7Bk%2B2%2B%5Csqrt%7Bk%5E2%2B2k%7D%7D%5B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E%5Cfrac%7Bn-1%7D%7B2%7D%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E%5Cfrac%7Bn-3%7D%7B2%7D%5D%5Cquad%20n%3D2t-1%5C%5C%5Cfrac%7B1%7D%7B2%7D%5B(k%2B1%2B%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7B%5Cfrac%7B1%7D%7B2%7Dn-1%7D%2B(k%2B1-%5Csqrt%7Bk%5E2%2B2k%7D)%5E%7B%5Cfrac%7B1%7D%7B2%7Dn-1%7D%5D%5Cqquad%5Cqquad%5C%20%20n%3D2t%5Cend%7Bcases%7D%5Cqquad%20t%5Cin%20N%5E*


題目來源:《數(shù)學(xué)教學(xué)通訊》、《數(shù)列與數(shù)學(xué)歸納法》

轉(zhuǎn)載請注明出處

二階遞推數(shù)列整理的評論 (共 條)

分享到微博請遵守國家法律
潜江市| 隆化县| 内乡县| 鞍山市| 青浦区| 商城县| 闸北区| 遵化市| 宁陕县| 台江县| 那坡县| 招远市| 积石山| 木里| 怀化市| 德化县| 静乐县| 长武县| 武夷山市| 晋州市| 大丰市| 威信县| 涡阳县| 丽江市| 乌鲁木齐市| 岫岩| 京山县| 乌鲁木齐县| 民勤县| 绥芬河市| 蓬溪县| 嘉峪关市| 上虞市| 保靖县| 岳普湖县| 崇明县| 崇文区| 唐河县| 陆良县| 崇信县| 河东区|