最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

n重伯努利試驗(yàn)與二項(xiàng)分布

2022-01-26 12:45 作者:匆匆-cc  | 我要投稿

? ? ? ? 伯努利試驗(yàn)(Bernoulli experiment):在同樣的條件下重復(fù)地、相互獨(dú)立地進(jìn)行的一種隨機(jī)試驗(yàn)。該隨機(jī)試驗(yàn)只有兩種可能結(jié)果:發(fā)生或者不發(fā)生。

? ? ? ? 比如說,擲一枚硬幣,其結(jié)果必然是正面朝上,或者反面朝上(即不是正面朝上),即為一種伯努利試驗(yàn)

? ? ? ??我們假設(shè)該項(xiàng)試驗(yàn)獨(dú)立重復(fù)地進(jìn)行了n次,那么就稱這一系列獨(dú)立重復(fù)的隨機(jī)試驗(yàn)為n重伯努利試驗(yàn)。

? ? ? ? n重伯努利試驗(yàn)具有以下基本特征:

P_%7B(%5Cxi%20%3Dk)%7D%3DC_%7Bn%7D%5Ek%20p%5Ek%20(1-p)%5E%7Bn-k%7D

? ? ? ? 該公式含義為:

? ? ? ? 從n次試驗(yàn)中選出k次為發(fā)生該事件,由于事件間相互獨(dú)立,因此乘上每一個(gè)事件發(fā)生的概率。

? ? ? ? 顯然,由二項(xiàng)式定理,有:

%5Csum_%7Bk%3D0%7D%5En%20P_%7B(%5Cxi%20%3Dk)%7D%20%3D%20%5Csum_%7Bk%3D0%7D%5En%20C_%7Bn%7D%5Ek%20p%5Ek%20(1-p)%5E%7Bn-k%7D%20%3D%20%20%5Csum_%7Bk%3D0%7D%5En%20C_%7Bn%7D%5E%7Bn-k%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%20%3D%20%5Bp%20%2B%20(1-p)%5D%5En%3D1

? ? ? ? 這也符合分布列的基本要求:

%5Csum_%7Bi%3D1%7D%5En%20Pi%20%3D%201%20

? ? ? ? 即:所有基本事件發(fā)生的可能性之和為1。

? ? ? ? 下面推導(dǎo)n重伯努利試驗(yàn)的期望(也叫做均值)。

? ? ? ? 根據(jù)期望的定義,

E_%7B(%5Cxi)%7D%3D%5Csum_%7Bk%3D0%7D%5En%20C_%7Bn%7D%5Ek%20p%5Ek%20(1-p)%5E%7Bn-k%7D%20%5Ccdot%20k%20%3D%20%5Csum_%7Bk%3D0%7D%5En%20k%20C_%7Bn%7D%5Ek%20p%5Ek%20(1-p)%5E%7Bn-k%7D

? ? ? ? 為對(duì)此項(xiàng)求和,引入公式:

kC_%7Bn%7D%5Ek%20%3D%20nC_%7Bn-1%7D%5E%7Bk-1%7D

? ? ? ? 代數(shù)證明如下:

kC_%7Bn%7D%5Ek%20%3D%20k%5Ccdot%20%5Cfrac%7Bn!%7D%7Bk!(n-k)!%7D%3Dn%5Ccdot%20%5Cfrac%7B(n-1)!%7D%7B(k-1)!(n-k)!%7D%3DnC_%7Bn-1%7D%5E%7Bk-1%7D

? ? ? ? 組合意義證明如下:

? ? ? ? ? ? 考慮一個(gè)n個(gè)人的隊(duì)伍,需要從中選出k個(gè)人,并且其中1個(gè)為隊(duì)長(zhǎng)。

? ? ? ? ? ? 解法一:先選出k個(gè)人,再?gòu)倪@k個(gè)人中選出1個(gè)隊(duì)長(zhǎng),第一步有C_%7Bn%7D%5Ek%20種,第二步有k種,由乘法原理,共有kC%5Ek_n種。

????????????解法二:先選出1個(gè)隊(duì)長(zhǎng),再?gòu)氖O拢?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=n-1" alt="n-1">)個(gè)人中選出(k-1)個(gè)隊(duì)員,第一步有n種,第二步有C%5E%7Bk-1%7D_%7Bn-1%7D種,由乘法原理,共有nC_%7Bn-1%7D%5E%7Bk-1%7D種。

????????????故kC_%7Bn%7D%5Ek%20%3D%20nC_%7Bn-1%7D%5E%7Bk-1%7D

????????接著證明。

%5Cbegin%7Balign%7D%0AE_%7B(%5Cxi)%7D%26%3D%5Csum_%7Bk%3D%5Ccolor%7Bred%7D%7B0%7D%7D%5En%20k%20C_%7Bn%7D%5Ek%20p%5Ek%20(1-p)%5E%7Bn-k%7D%0A%5C%5C%26%3D%5Csum_%7Bk%3D%5Ccolor%7Bred%7D%7B1%7D%7D%5En%20%5Ccolor%7Bblue%7D%7Bk%20C_%7Bn%7D%5Ek%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%0A%5C%5C%26%3D%5Csum_%7Bk%3D1%7D%5En%20%5Ccolor%7Bblue%7D%7Bn%20C_%7Bn-1%7D%5E%7Bk-1%7D%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%0A%5C%5C%26%3Dn%5Csum_%7Bk%3D1%7D%5En%20C_%7Bn-1%7D%5E%7Bk-1%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%0A%5C%5C%26%3Dnp%5Csum_%7Bk%3D1%7D%5En%20C_%7Bn-1%7D%5E%7Bk-1%7D%20p%5Ek%20(1-p)%5E%7B(n-1)-(k-1)%7D%0A%5C%5C%26%3Dnp%5Bp%2B(1-p)%5D%5E%7Bn-1%7D%0A%5C%5C%26%3Dnp%0A%5Cend%7Balign%7D

????????同理,根據(jù)方差公式

D_%7B(%5Cxi%20)%7D%3DE_%7B(%5Cxi%5E2)%7D-E%5E2_%7B(%5Cxi)%7D

## 簡(jiǎn)單推導(dǎo)如下:

%5Cbegin%7Balign%7D%0A%5Ccolor%7BGray%7D%7BD_%7B(%5Cxi)%7D%7D%26%5Ccolor%7BGray%7D%7B%3D%7D%5Ccolor%7BGray%7D%7B%5Csum_%7Bi%3D1%7D%5En(%5Cxi_i-E_%7B(%5Cxi)%7D)%5E2p_i%7D%0A%5C%5C%26%5Ccolor%7BGray%7D%7B%3D%7D%5Ccolor%7BGray%7D%7B%5Csum_%7Bi%3D1%7D%5En%5Cxi_i%5E2p_i-2E_%7B(%5Cxi)%7D%5Csum_%7Bi%3D1%7D%5En%5Cxi_ip_i%2BE%5E2_%7B(%5Cxi)%7D%7D%0A%5C%5C%26%5Ccolor%7BGray%7D%7B%3D%7D%5Ccolor%7BGray%7D%7B%5Csum_%7Bi%3D1%7D%5En%5Cxi_i%5E2p_i-E%5E2_%7B(%5Cxi)%7D%7D%0A%5C%5C%26%5Ccolor%7BGray%7D%7B%3D%7D%5Ccolor%7BGray%7D%7BE_%7B(%5Cxi%5E2)%7D-E%5E2_%7B(%5Cxi)%7D%7D%0A%5Cend%7Balign%7D

????????我們有

%5Cbegin%7Balign%7D%0AD_%7B(%5Cxi)%7D%26%3D%5Csum_%7Bk%3D%5Ccolor%7Bred%7D%7B0%7D%7D%5En%20k%5E2%20C_%7Bn%7D%5Ek%20p%5Ek%20(1-p)%5E%7Bn-k%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3D%5Csum_%7Bk%3D%5Ccolor%7Bred%7D%7B1%7D%7D%5En%20%5Ccolor%7Bblue%7D%7Bk%5E2%20C_%7Bn%7D%5Ek%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3D%5Csum_%7Bk%3D1%7D%5En%20%5Ccolor%7Bblue%7D%7Bn%20C_%7Bn-1%7D%5E%7Bk-1%7D%20k%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn%5Csum_%7Bk%3D1%7D%5En%20kC_%7Bn-1%7D%5E%7Bk-1%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn%5Csum_%7Bk%3D%5Ccolor%7Bred%7D%7B1%7D%7D%5En%20(k-1)C_%7Bn-1%7D%5E%7Bk-1%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%2Bn%5Csum_%7Bk%3D1%7D%5En%20C_%7Bn-1%7D%5E%7Bk-1%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn%5Csum_%7Bk%3D%5Ccolor%7Bred%7D%7B2%7D%7D%5En%20(k-1)C_%7Bn-1%7D%5E%7Bk-1%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%2Bnp%5Csum_%7Bk%3D1%7D%5En%20C_%7Bn-1%7D%5E%7Bk-1%7D%20p%5E%7Bk-1%7D%20(1-p)%5E%7B(n-1)-(k-1)%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn%5Csum_%7Bk%3D2%7D%5En%20(n-1)C_%7Bn-2%7D%5E%7Bk-2%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%2Bnp%5Bp%2B(1-p)%5D%5E%7Bn-1%7D-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn(n-1)%5Csum_%7Bk%3D2%7D%5En%20C_%7Bn-2%7D%5E%7Bk-2%7D%20p%5Ek%20(1-p)%5E%7Bn-k%7D%2Bnp-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn(n-1)p%5E2%5Csum_%7Bk%3D2%7D%5En%20C_%7Bn-2%7D%5E%7Bk-2%7D%20p%5E%7Bk-2%7D%20(1-p)%5E%7B(n-2)-(k-2)%7D%2Bnp-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn(n-1)p%5E2%5Bp%2B(1-p)%5D%5E%7Bn-2%7D%2Bnp-E%5E2_%7B(%5Cxi)%7D%0A%5C%5C%26%3Dn(n-1)p%5E2%2Bnp-n%5E2p%5E2%0A%5C%5C%26%3D%5Ccancel%7Bn%5E2p%5E2%7D-np%5E2%2Bnp-%5Ccancel%7Bn%5E2p%5E2%7D%0A%5C%5C%26%3Dnp(1-p)%0A%5Cend%7Balign%7D

????????思路很簡(jiǎn)單,圍繞一個(gè)組合恒等式進(jìn)行證明。

????????看起來很長(zhǎng),仔細(xì)琢磨就是不斷從未知套入已知。

????????特別的,當(dāng)n%3D1時(shí),二項(xiàng)分布退化為兩點(diǎn)分布

????????相關(guān)期望與方差只要在二項(xiàng)分布中取n%3D1即可。

E_%7B(%5Cxi%20)%7D%3Dp

D_%7B(%5Cxi)%7D%3Dp(1-p)

????????兩點(diǎn)分布典型的例子有:

????????????拋擲硬幣的正反面,明天是否下雨,etc.

n重伯努利試驗(yàn)與二項(xiàng)分布的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
江山市| 宁河县| 清丰县| 高尔夫| 额济纳旗| 康定县| 凤台县| 大庆市| 石林| 金华市| 迭部县| 永春县| 益阳市| 延边| 保康县| 嫩江县| 南丹县| 朔州市| 宜宾县| 北票市| 峡江县| 潞西市| 赤城县| 大丰市| 张家界市| 嘉义县| 秦皇岛市| 连江县| 新密市| 华蓥市| 精河县| 扎鲁特旗| 延庆县| 海宁市| 峨眉山市| 金山区| 昌乐县| 长丰县| 辽源市| 齐齐哈尔市| 石狮市|