強(qiáng)化學(xué)習(xí)與最優(yōu)控制
鏈接:https://pan.baidu.com/s/14T_GAZgaOaufEQDlS9Paog?pwd=ymyi?
提取碼:ymyi

Dimitri P. Bertseka,美國MIT終身教授,美國國家工程院院士,清華大學(xué)復(fù)雜與網(wǎng)絡(luò)化系統(tǒng)研究中心客座教授,電氣工程與計算機(jī)科學(xué)領(lǐng)域國際知名作者,著有《非線性規(guī)劃》《網(wǎng)絡(luò)優(yōu)化》《凸優(yōu)化》等十幾本暢銷教材和專著。本書的目的是考慮大型且具有挑戰(zhàn)性的多階段決策問題,這些問題原則上可以通過動態(tài)規(guī)劃和最優(yōu)控制來解決,但它們的精確解決方案在計算上是難以處理的。本書討論依賴于近似的解決方法,以產(chǎn)生具有足夠性能的次優(yōu)策略。這些方法統(tǒng)稱為增強(qiáng)學(xué)習(xí),也可以叫做近似動態(tài)規(guī)劃和神經(jīng)動態(tài)規(guī)劃等。
本書的主題產(chǎn)生于最優(yōu)控制和人工智能思想的相互作用。本書的目的之一是探索這兩個領(lǐng)域之間的共同邊界,并架設(shè)一座具有任一領(lǐng)域背景的專業(yè)人士都可以訪問的橋梁。
內(nèi)容簡介
《強(qiáng)化學(xué)習(xí)與最優(yōu)控制(英文版)》的目的是考慮大型且具有挑戰(zhàn)性的多階段決策問題,這些問題原則上可以通過動態(tài)規(guī)劃和優(yōu)控制來解決,但它們的解決方案在計算上是難以處理的?!稄?qiáng)化學(xué)習(xí)與最優(yōu)控制(英文版)》討論依賴于近似的解決方法,以產(chǎn)生具有足夠性能的次優(yōu)策略。這些方法統(tǒng)稱為增強(qiáng)學(xué)習(xí),也可以叫做近似動態(tài)規(guī)劃和神經(jīng)動態(tài)規(guī)劃等?!稄?qiáng)化學(xué)習(xí)與最優(yōu)控制(英文版)》的主題產(chǎn)生于優(yōu)控制和人工智能思想的相互作用。《強(qiáng)化學(xué)習(xí)與最優(yōu)控制(英文版)》的目的之一是探索這兩個領(lǐng)域之間的共同邊界,并架設(shè)一座具有任一領(lǐng)域背景的人士都可以訪問的橋梁。
作者簡介
Dimitri P. Bertseka,美國MIT終身教授,美國國家工程院院士,清華大學(xué)復(fù)雜與網(wǎng)絡(luò)化系統(tǒng)研究中心客座教授。電氣工程與計算機(jī)科學(xué)領(lǐng)域國際知名作者,著有《非線性規(guī)劃》《網(wǎng)絡(luò)優(yōu)化》《凸優(yōu)化》等十幾本暢銷教材和專著。