就一有關(guān)數(shù)列 之結(jié)論證明
s1,s2為方程
c·x2+(d-a)x-b=0
的根
有
s1+s2=(a-d)/c
s1s2=-b/c
即
(ad-bc)
/(a-cs2)2
=(a2-ac(a-d)/c-c2·b/c)
/(a-cs2)2
=(a2-ac(s1+s2)+c2·s1s2)
/(a-cs2)2
=(a-cs1)(a-cs2)/(a-cs2)2
=(a-cs1)/(a-cs2)
有
c·s22+(d-a)s2-b=0
即
b-s2d=-as2+s22c
即
(b-s2d)/(a-s2c)
=-s2
a(n+1)
=(a·an+b)/(c·an+d)
即
a(n+1)-s2
=((a-s2c)an+(b-s2d))/(c·an+d)
即
1/(a(n+1)-s2)
=(c·an+d)
/((a-s2c)an+(b-s2d))
即
1/(a(n+1)-s2)
=(c·an+d)/(a-s2c)
/(an+(b-s2d)/(a-s2c))
即
1/(a(n+1)-s2)
=(c/(a-s2c)(an+(b-s2d)/(a-s2c))
-c(b-s2d)/(a-s2c)2
+d(a-s2c)/(a-s2c)2)
/(an+(b-s2d)/(a-s2c))
即
1/(a(n+1)-s2)
=(ad-bc)/(a-s2c)2
/(an+(b-s2d)/(a-s2c))
+c/(a-s2c)
即
1/(a(n+1)-s2)
=(a-cs1)/(a-cs2)
/(an-s2)
+c/(a-s2c)
若s1=s2
即(a-cs1)/(a-cs2)=1
即
1/(a(n+1)-s1)
=1/(an-s1)+c/(a-cs1)
即
1/(a(n+1)-s1)-1/(an-s1)
=c/(a-cs1)
即
{1/(an-s1)}
為公差為
c/(a-cs1)
的等差數(shù)列
若s1≠s2
1/(a(n+1)-s2)
=(a-cs1)/(a-cs2)
/(an-s2)
+c/(a-s2c)
即1/(a(n+1)-s2)
=((a-cs1)/(a-cs2)/(an-s2)
+(((a-cs1)-(a-cs2))/(a-cs2))/(s2-s1))
即1/(a(n+1)-s2)+1/(s2-s1)
=((a-cs1)/(a-cs2)/(an-s2)
+(a-cs1)/(a-cs2)/(s2-s1))
即1/(a(n+1)-s2)+1/(s2-s1)
=(a-cs1)/(a-cs2)
(1/(an-s2)+1/(s2-s1))
即1/(a(n+1)-s2)+1/(s2-s1)
/(1/(an-s2)+1/(s2-s1))
=(a-cs1)/(a-cs2)
即{1/(an-s2)+1/(s2-s1)}
即{(s2-s1)/(an-s2)+1}
即{(an-s2+s2-s1)/(an-s2)}
即{(an-s1)/(an-s2)}
為公比為
(a-cs1)/(a-cs2)
的等比數(shù)列
得證