最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Laurent級數(shù)與留數(shù)定理

2022-01-01 16:02 作者:子瞻Louis  | 我要投稿

本期專欄的內(nèi)容主要是復(fù)分析的幾個基本公式

本期的定理要用到一個數(shù)學(xué)分析中的公式,即Green公式

%5Ciint_D%5Cleft(%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20x%7D-%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20y%7D%5Cright)%5Cmathrm%20dx%5Cmathrm%20dy%3D%5Coint_%5Cbar%20D%20P%5Cmathrm%20dy%2BQ%5Cmathrm%20dx

其中P%3DP(x%2Cy)%2CQ%3DQ(x%2Cy)是區(qū)域z_0上具有一階連續(xù)偏導(dǎo)數(shù)的函數(shù),%5Cbar%20DD的邊界正向曲線

本期專欄不給出證明(懶狗本狗

復(fù)積分中的Cauchy定理

引:

設(shè)z%3Dx%2Biy%2Cx%2Cy%5Cin%5Cmathbb%20R,%5COmega%20內(nèi)的全純函數(shù)f(z)的實部和虛部分別為

f(x%2Biy)%3Du(x%2Cy)%2Biv(x%2Cy)

Cauchy-Riemann方程(C-R方程)成立:

%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%2C%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D-%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D

?設(shè)z_0%3Dx_0%2Biy_0%5Cin%5COmega,因f(z)%5COmega%20內(nèi)全純,故存在兩個復(fù)數(shù)A%2CB使得

f(z)-f(z_0)%3DA(x-x_0)%2BB(y-y_0)%2B%5Crho(z)(z-z_0)

其中z%5Crightarrow%20z_0時,%5Crho(z)%5Crightarrow0,通過對上式取x%2Cy的偏導(dǎo),可得

%5Cbegin%7Baligned%7DA%26%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D(z_0)%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D(x_0%2Cy_0)%2Bi%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D(x_0%2Cy_0)%5C%5CB%26%3D%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D(z_0)%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D(x_0%2Cy_0)%2Bi%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D(x_0%2Cy_0)%5Cend%7Baligned%7D

又根據(jù)

z%3Dx%2Biy%2C%5Cbar%20z%3Dx-iy%5CRightarrow%20x%3D%5Cfrac%7Bz%2B%5Cbar%20z%7D2%2Cy%3D%5Cfrac%7Bz-%5Cbar%20z%7D%7B2i%7D

%5Cbar%20z表示z的共軛復(fù)數(shù),由此可得

%5Cbegin%7Baligned%7Df(z)-f(z_0)%26%3DA%5Cleft(%5Cfrac%7Bz%2B%5Cbar%20z%7D2-%5Cfrac%7Bz_0%2B%5Cbar%7Bz_0%7D%7D2%5Cright)%2BB%5Cleft(%5Cfrac%7Bz-%5Cbar%20z%7D%7B2i%7D-%5Cfrac%7Bz_0-%5Cbar%7Bz_0%7D%7D%7B2i%7D%5Cright)%2B%5Crho(z)(z-z_0)%5C%5C%26%3D%5Cfrac%7BA-iB%7D2(z-z_0)%2B%5Cfrac%7BA%2BiB%7D2(%5Cbar%20z-%5Cbar%7Bz_0%7D)%2B%5Crho(z)(z-z_0)%5Cend%7Baligned%7D

%5CRightarrow%5Cfrac%7Bf(z)-f(z_0)%7D%7Bz-z_0%7D%3D%5Cfrac%7BA-iB%7D2%2B%5Crho(z)%2B%0A%5Ccolor%7Bpurple%7D%7B%5Cfrac%7BA%2BiB%7D2%5Cfrac%7B%5Coverline%7Bz-z_0%7D%7D%7Bz-z_0%7D%7D

觀察紫色部分,發(fā)現(xiàn)z%5Crightarrow%20z_0時極限不存在:

%5Clim_%7Bz%5Cto%20z_0%5C%5C%5CIm%7B(z-z_0)%7D%3D0%7D%5Cfrac%7B%5Coverline%7Bz-z_0%7D%7D%7Bz-z_0%7D%3D1%E2%89%A0%5Clim_%7Bz%5Cto%20z_0%5C%5C%5CRe%7B(z-z_0)%7D%3D0%7D%5Cfrac%7B%5Coverline%7Bz-z_0%7D%7D%7Bz-z_0%7D%3D-1

因此,若要讓f(z)z_0處解析,必須有

%5Cfrac%7BA%2BiB%7D2%3D0

%5CRightarrow%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D(x_0%2Cy_0)-%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D(x_0%2Cy_0)%2Bi%5Cleft(%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D(x_0%2Cy_0)%2B%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D(x_0%2Cy_0)%5Cright)%3D0

%5CRightarrow%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%2C%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D-%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D?

Cauchy定理

f(z)在區(qū)域D內(nèi)全純,則對于簡單閉曲線C%5Csubset%20D(連續(xù)而不自交并且能定義長度的閉合曲線),有

%5Coint_Cf(z)%5Cmathrm%20dz%3D0

?設(shè)f(z)%3Du%2Biv,則

%5Cbegin%7Baligned%7D%5Coint_Cf(z)%5Cmathrm%20dz%26%3D%5Coint_C(u%2Biv)%5Cmathrm%20d(x%2Biy)%5C%5C%26%3D%5Coint_Cu%5Cmathrm%20dx-v%5Cmathrm%20dy%2Bi%5Coint_Cu%5Cmathrm%20dy%2Bv%5Cmathrm%20dx%5Cend%7Baligned%7D

利用Green公式,可得

%5Cbegin%7Baligned%7D%5Coint_Cf(z)%5Cmathrm%20dz%26%3D%5Coint_Cu%5Cmathrm%20dx-v%5Cmathrm%20dy%2Bi%5Coint_Cu%5Cmathrm%20dy%2Bv%5Cmathrm%20dx%5C%5C%26%3D%5Ciint_D%5Ccolor%7Bblue%7D%7B%5Cleft(%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%5Cright)%7D%5Cmathrm%20dx%5Cmathrm%20dy%2Bi%5Ciint_D%5Ccolor%7Bblue%7D%7B%5Cleft(%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D-%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%5Cright)%7D%5Cmathrm%20dx%5Cmathrm%20dy%5Cend%7Baligned%7D

再根據(jù)C-R方程,藍色部分恒為0,定理得證?

根據(jù)Cauchy定理,可得一個經(jīng)典的結(jié)論:

f(z)為D內(nèi)的解析函數(shù),對于D內(nèi)的兩條起點與終點都重合的簡單閉曲線C1,C2,有

%5Cint_%7BC_1%7Df(z)%5Cmathrm%20dz%3D%5Cint_%7BC_2%7Df(z)%5Cmathrm%20dz

這是因為沿C2的負方向剛好與C1共同構(gòu)成一條簡單閉曲線

此推論也可簡訴為復(fù)積分的結(jié)果與積分路徑無關(guān)

Cauchy積分公式

(沒錯本期專欄就是Cauchy主場)

同樣先給個引理:

a是簡單閉曲線C內(nèi)部的一點,則

%5Coint_C%5Cfrac%7B%5Cmathrm%20dz%7D%7B(z-a)%5E%7Bn%2B1%7D%7D%3D%5Cbegin%7Bcases%7D%202%5Cpi%20i%26n%3D0%5C%5C0%20%26%20n%E2%89%A00%2Cn%5Cin%5Cmathbb%20Z%5Cend%7Bcases%7D

?根據(jù)Cauchy定理,該積分與C的形狀無關(guān),不妨設(shè)C是以z_0為圓心r為半徑的圓周,則

z%3Da%2Bre%5E%7Bit%7D%2Ct%3A0%5Crightarrow2%5Cpi%2C%5Cmathrm%20dz%3Dire%5E%7Bit%7D%5Cmathrm%20dt

%5Cbegin%7Baligned%7D%5Coint_C%5Cfrac%7B%5Cmathrm%20dz%7D%7B(z-a)%5E%7Bn%2B1%7D%7D%26%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7Bire%5E%7Bit%7D%7D%7Br%5E%7Bn%2B1%7De%5E%7B(n%2B1)it%7D%7D%5Cmathrm%20dt%5C%5C%26%3Di%5Cfrac1%7Br%5En%7D%5Cint_0%5E%7B2%5Cpi%7De%5E%7B-int%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

我們熟知當(dāng)n≠0時,上面的積分等于0,n=0時,上訴積分為2πi,引理得證?

Cauchy積分公式

f(z)在簡單閉曲線C的內(nèi)部全純,a是C內(nèi)部的一點,則

%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%3Df(a)

?以a點為圓心作一半徑為%5Cvarepsilon的圓周%5Cgamma,連接%5Cvarepsilon與C上的兩點AB

積分路徑

沿C%2BBA%2B%5Cgamma%5E-%2BAB積分,f(z)在被圓環(huán)區(qū)域內(nèi)全純,根據(jù)Cauchy定理,有

%5Cint_C%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%2B%5Cint_%7BBA%7D%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%2B%5Cint_%7B%5Cgamma%5E-%7D%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%2B%5Cint_%7BAB%7D%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%3D0

注意到沿AB與BA的積分剛好可以抵消,于是

%5Coint_C%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%2B%5Coint_%7B%5Cgamma%5E-%7D%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%3D0

%5CRightarrow%5Coint_C%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz%3D%5Coint_%7B%5Cgamma%7D%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz

半徑趨于0時右側(cè)積分基本上等于2%5Cpi%20if(a),這里就簡單驗證一下:設(shè)

z%3Da%2B%5Cvarepsilon%20e%5E%7Bit%7D%2Ct%3A0%5Crightarrow2%5Cpi%2C%5Cmathrm%20dz%3Di%5Cvarepsilon%20e%5E%7Bit%7D%5Cmathrm%20dt

%5Cbegin%7Baligned%7D%5CRightarrow%5Cleft%7C%5Coint_%7B%5Cgamma%7D%5Cfrac%7Bf(z)%7D%7Bz-a%7D%5Cmathrm%20dz-%5Coint_%7B%5Cgamma%7D%5Cfrac%7Bf(a)%7D%7Bz-a%7D%5Cmathrm%20dz%5Cright%7C%26%3D%5Cleft%7C%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7Bf(a%2B%5Cvarepsilon%20e%5E%7Bit%7D)-f(a)%7D%7B%5Cvarepsilon%20e%5E%7Bit%7D%7Di%5Cvarepsilon%20e%5E%7Bit%7D%5Cmathrm%20dt%5Cright%7C%5C%5C%26%3D%5Cleft%7C%20i%5Cint_0%5E%7B2%5Cpi%7Df(a%2B%5Cvarepsilon%20e%5E%7Bit%7D)-f(a)%5Cmathrm%20dt%5Cright%7C%5C%5C%26%5Cle%5Cint_0%5E%7B2%5Cpi%7D%5Cvert%20f(a%2B%5Cvarepsilon%20e%5E%7Bit%7D)-f(a)%5Cvert%5Cmathrm%20dt%5C%5C%26%5Cle2%5Cpi%5Cmax_%7B0%5Cle%20%5Cxi%5Cle2%5Cpi%7D%5Cvert%20f(a%2B%5Cvarepsilon%20e%5E%7Bi%5Cxi%7D)-f(a)%5Cvert%5Crightarrow0%5Cend%7Baligned%7D

?

推論:Cauchy高階導(dǎo)公式

設(shè)f(z)在區(qū)域D內(nèi)全純,C是D內(nèi)的一條簡單閉曲線,根據(jù)Cauchy可得它有以下積分表示:

f(z)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(w)%7D%7Bw-z%7D%5Cmathrm%20dw

對它取n階導(dǎo)數(shù),可得

%5Cfrac%7B%5Cmathrm%20d%5En%7D%7B%5Cmathrm%20dz%5En%7Df(z)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_Cf(w)%5Cfrac%7B%5Cpartial%5En%7D%7B%5Cpartial%20z%5En%7D%5Cfrac1%7Bw-z%7D%5Cmathrm%20dw%3D%5Cfrac%7Bn!%7D%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(w)%7D%7B(w-z)%5E%7Bn%2B1%7D%7D%5Cmathrm%20dw

這就是Cauchy高階導(dǎo)公式了

Laurent級數(shù)

小學(xué)二年級就已經(jīng)學(xué)過的微積分中,我們知道了滿足一定條件的一個函數(shù)存在以下Taylor級數(shù)展開

f(x)%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7Bf%5E%7B(n)%7D(x_0)%7D%7Bn!%7D(x-x_0)%5En

but它也有它的局限性,比如e%5E%7B1%2Fx%7D在零處就不能展開為Taylor級數(shù)了,不過我們可以通過換元來解決這個問題:

e%5E%20t%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7Bt%5En%7D%7Bn!%7D%5Cstackrel%7Bt%3D1%2Fx%7D%7B%5Clongrightarrow%7De%5E%7B1%2Fx%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7Bx%5E%7B-n%7D%7D%7Bn!%7D

這樣雖然展開中出現(xiàn)了負冪次,但除x=0外它右側(cè)級數(shù)都是收斂的

此類展開的推廣就是Laurent級數(shù)(洛朗級數(shù))展開

f(z)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20a_n(z-z_0)%5En

Laurent級數(shù)一般被分為兩部分:

f(z)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20a_n(z-z_0)%5En%3D%5Ccolor%7Bblue%7D%7B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_%7B-n%7D(z-z_0)%5E%7B-n%7D%7D%2B%5Ccolor%7Bpurple%7D%7B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20a_%7Bn%7D(z-z_0)%5E%7Bn%7D%7D

藍色部分是它的主要部分,紫色部分則是次要部分,這兩個東西本身都是冪級數(shù),所以它們有其對應(yīng)的收斂域,這里假設(shè)它的收斂域為:

%5Cleft%7C%5Cfrac1%7Bz-z_0%7D%5Cright%7C%5Cle%20r%2C%5Cleft%7Cz-z_0%5Cright%7C%5Cle%20R%5CRightarrow%5Cfrac1r%5Cle%5Cvert%20z-z_0%5Cvert%5Cle%20R

這個是復(fù)平面上的一個圓環(huán),這也告訴了我們半純函數(shù)在一個圓環(huán)內(nèi)全純,那么它就可以在這個圓環(huán)內(nèi)展開為Laurent級數(shù),

設(shè)一圍道:%5CGamma%3DC%2BBA%2B%5Cgamma%5E-%2BAB

圓環(huán)圍道

根據(jù)Cauchy積分公式,可得

f(z)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%7B%5CGamma%7D%5Cfrac%7Bf(s)%7D%7Bs%20-z%7D%5Cmathrm%20ds

同樣AB和BA的積分可以相抵,故

f(z)%3D%5Cint_%7BC%2B%5Cgamma%5E-%7D%5Cfrac%7Bf(s)%7D%7Bs-z%7D%5Cmathrm%20ds%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(s)%7D%7Bs-z%7D%5Cmathrm%20ds-%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%5Cgamma%5Cfrac%7Bf(s)%7D%7Bs-z%7D%5Cmathrm%20ds

z是圓環(huán)內(nèi)部的一點,因此在C上,%7Cz-z_0%7C%EF%BC%9C%7Cs-z_0%7C%5CRightarrow%20%5Cleft%7C%5Cfrac%7Bz-z_0%7D%7Bs-z_0%7D%5Cright%7C%EF%BC%9C1

%5Cbegin%7Baligned%7D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(s)%7D%7Bs-z%7D%5Cmathrm%20ds%26%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(s)%7D%7Bs-z_0-(z-z_0)%7D%5Cmathrm%20ds%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(s)%7D%7Bs-z_0%7D%5Ccdot%5Cfrac1%7B1-%5Cfrac%7Bz-z_0%7D%7Bs-z_0%7D%7D%5Cmathrm%20ds%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%5Cfrac%7Bf(s)%7D%7Bs-z_0%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%7Bz-z_0%7D%7Bs-z_0%7D%5Cright)%5En%5Cmathrm%20ds%5C%5C%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft%5C%7B%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_C%20%5Cfrac%7Bf(s)%7D%7B(s-z_0)%5E%7Bn%2B1%7D%7D%5Cmathrm%20ds%5Cright%5C%7D(z-z_0)%5En%5Cend%7Baligned%7D

其中,積分與和號可以交換順序是由于上訴級數(shù)收斂且圍道積分總是存在

用同樣的方法,可以得到%7Cs-z_0%7C%EF%BC%9C%7Cz-z_0%7C%5CRightarrow%20%5Cleft%7C%5Cfrac%7Bs-z_0%7D%7Bz-z_0%7D%5Cright%7C%EF%BC%9C1

-%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%5Cgamma%5Cfrac%7Bf(s)%7D%7Bs-z%7D%5Cmathrm%20ds%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cleft%5C%7B%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%5Cgamma%5Cfrac%7Bf(s)%7D%7B(s-z_0)%5E%7B-n%2B1%7D%7D%5Cmathrm%20ds%5Cright%5C%7D(z-z_0)%5E%7B-n%7D

代回f(z)中,可得

f(z)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%5Ccolor%7Bred%7D%7B%5Cleft%5C%7B%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%7B%5CGamma%7D%20%5Cfrac%7Bf(s)%7D%7B(s-z_0)%5E%7Bn%2B1%7D%7D%5Cmathrm%20ds%5Cright%5C%7D%7D(z-z_0)%5En

留數(shù)定理

對一個區(qū)域D內(nèi)的僅有z_0一個極點(即不解析點)的半純函數(shù)f(z),對其Laurent展開后在圍道C%5Csubset%20D上積分

%5Coint_Cf(z)%5Cmathrm%20dz%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20a_n%5Coint_C(z-z_0)%5En%5Cmathrm%20dz

前面已經(jīng)得知了右側(cè)圍道積分僅當(dāng)n=-1時不為零,故

%5Coint_Cf(z)%5Cmathrm%20dz%3D2%5Cpi%20ia_%7B-1%7D

其中,a_%7B-1%7D就被稱為留數(shù)殘數(shù)(Residue)????

記?z_0?處的留數(shù)為%5Cmathop%7B%5Ctext%7BRes%7D%7D_%7Bz%3Dz_0%7Df(z),由此我們引出以下定理:

f(z)是區(qū)域D內(nèi)的亞純函數(shù),令A(yù)為它在D內(nèi)的極點點集,C是D的邊界曲線,則

%5Coint_Cf(z)%5Cmathrm%20dz%3D%5Csum_%7Ba%5Cin%20A%7D2%5Cpi%20i%5Cmathop%7B%5Cmathrm%7BRes%7D%7D_%7Bz%3Da%7Df(z)

?設(shè)%5Cgamma是以極點a為圓心半徑為r的圓周,%5CGamma是所以這樣的%5Cgamma的集合

運用柯西定理,可得

%5Coint_%7BC-%5CGamma%7Df(z)%5Cmathrm%20dz%3D0

%5CRightarrow%5Coint_Cf(z)%5Cmathrm%20dz%3D%5Csum_%7B%5Cgamma%5Cin%5CGamma%7D%5Coint_%5Cgamma%20f(z)%5Cmathrm%20dz

將右側(cè)每個積分在極點處展開為Laurent級數(shù),再令r%5Crightarrow0即可得證?

運用留數(shù)定理我們可以通過計算一些亞純函數(shù)的留數(shù)來輕易計算圍道積分

這些亞純函數(shù)需要滿足的條件就是Laurent展開中只有有限項負冪次,假設(shè)

f(z)%3D%5Csum_%7Bn%3D-m%7D%5E%5Cinfty%20a_%7Bn%7D(z-z_0)%5E%7Bn%7D

m為處的極點階數(shù)(即最高負冪次),在左右兩邊乘以(z-z_0)%5E%7Bm%7D,所有項就全部是正冪次了,

(z-z_0)%5Emf(z)%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20a_%7Bn-m%7D(z-z_0)%5E%7Bn%7D

第m-1項就是它的留數(shù)了,可以通過類似計算Taylor級數(shù)系數(shù)的方法算出第n-1項為

%5Cmathop%7B%5Ctext%7BRes%7D%7D_%7Bz%3Dz_0%7Df(z)%3D%5Clim_%7Bz%5Cto%20z_0%7D%5Cfrac1%7B(m-1)!%7D%5Cfrac%7B%5Cmathrm%20d%5E%7Bm-1%7D%7D%7B%5Cmathrm%20dz%5E%7Bm-1%7D%7D%5Cleft%5B(z-z_0)%5Emf(z)%5Cright%5D

若最高負冪次是-1,那么該極點稱為單極點,單極點處的留數(shù)為

%5Cmathop%7B%5Ctext%7BRes%7D%7D_%7Bz%3Dz_0%7Df(z)%3D%5Clim_%7Bz%5Cto%20z_0%7D(z-z_0)f(z)


Laurent級數(shù)與留數(shù)定理的評論 (共 條)

分享到微博請遵守國家法律
江永县| 晋州市| 沅陵县| 晴隆县| 滦南县| 类乌齐县| 乌兰察布市| 齐河县| 马山县| 石嘴山市| 呼伦贝尔市| 铁力市| 临猗县| 监利县| 安塞县| 舟曲县| 蒲城县| 江津市| 广州市| 四会市| 炎陵县| 徐闻县| 武汉市| 全南县| 公主岭市| 大庆市| 延吉市| 瓦房店市| 乾安县| 军事| 吉隆县| 巴中市| 梧州市| 肥东县| 唐山市| 大化| 贵定县| 泸溪县| 绍兴县| 洛南县| 电白县|