就 一位網(wǎng)友 棱臺體積公式 微積分推導 具體過程 如下 供諸君參考

設
棱臺
等高截面等積圓臺
母線與對稱軸所成角為θ
有
r/h=tanθ
即
r2/h2=tan2θ
即
πr2/h2=πtan2θ
即
S/h2=πtan2θ
(定值πtan2θ即這位網(wǎng)友所設常數(shù)k)
即
h=√S/(√πtanθ)
即
dh=1/(2√(πS)tanθ)dS
即
V
=
∫(h1,h2)Sdh
=
∫(S1,S2)S/(2√(πS)tanθ)dS
=
∫(S1,S2)√S/(2√πtanθ)dS
=
1/(2√πtanθ)∫(S1,S2)√SdS
=
1/(2√πtanθ)·2/3S^(3/2)|(S1,S2)
=
1/(3√πtanθ)(√S23-√S13)
=
(√S2-√S1)
(S1+S2+√(S1S2))
/
(3√πtanθ)
=
(h2-h1)
(S1+S2+√(S1S2))
/
3
=
H(S1+S2+√(S1S2))/3
ps.
抑或
(1)
有
S1/S2
=
h12/h22
即
S1/h12=S2/h22
設
S1/h12=S2/h22=k
有
S1=kh12
S2=kh22
即
S=kh
(2)
V
=
∫(h1,h2)Sdh
=
∫(h1,h2)πtan2θh2dh
=
πtan2θ∫(h1,h2)h2dh
=
πtan2θ/3·h3|(h1,h2)
=
πtan2θ(h23-h13)/3
=
πtan2θ(h2-h1)(h12+h1h2+h22)/3
=
πH(r12+r1r2+r22)/3
=
H(S1+√(S1S2)+S2)/3
標簽: