基于LMS算法的Mackey Glass時間序列預(yù)測附Matlab代碼
?作者簡介:熱愛科研的
開發(fā)者,修心和技術(shù)同步精進,matlab項目合作可私信。??個人主頁:Matlab科研工作室
??個人信條:格物致知。
? 內(nèi)容介紹
在自然科學(xué)和社會科學(xué)各領(lǐng)域中,大量決策問題離不開預(yù)測,預(yù)測是決策的基礎(chǔ).
是利用現(xiàn)有的歷史數(shù)據(jù)構(gòu)造模型,進而預(yù)測未來.因此,該文首先介紹了定量化的時間序列預(yù)測目前采用的一種方法與預(yù)測模型,然后在分析時間序列預(yù)測相關(guān)概念的基礎(chǔ)上,研究了其實現(xiàn)方法.? 部分代碼
%% Mackey Glass Time Series Prediction Using Least Mean Square (LMS)
% Author: SHUJAAT KHAN
clc
clear all
close all
%% Loading Time series data
% I generated a series y(t) for t = 0,1, . . . ,3000, using
% mackey glass series equation with the following configurations:
% b = 0.1, a = 0.2, Tau = 20, and the initial conditions y(t - Tau) = 0.
load Dataset\Data.mat?
time_steps=2;
teacher_forcing=1; % recurrent ARMA modelling with forced desired input after defined time steps?
%% Training and Testing datasets
% For training
Tr=Data(100:2500,1);? ? % Selecting a Interval of series data t = 100~2500
Yr(Tr)=Data(Tr,2);? ? ? % Selecting a chuck of series data y(t)
% For testing
Ts=Data(2500:3000,1);? ?% Selecting a Interval of series data t = 2500~3000
Ys(Ts)=Data(Ts,2);? ? ? % Selecting a chuck of series data y(t)
figure(2)
plot(Tr(2*M:end),Yr(Tr(2*M:end)));? ? ? % Actual values of mackey glass series
hold on
plot(Tr(2*M:end),Yp(Tr(2*M:end))','r')? ?% Predicted values during training
plot(Ts,Ys(Ts),'--b');? ? ? ? % Actual unseen data
plot(Ts(1:end-time_steps+1),Yp(Ts(1:end-time_steps+1))','--r');? % Predicted values of mackey glass series (testing)
xlabel('Time: t');
ylabel('Output: Y(t)');
title('Mackey Glass Time Series Prediction Using Least Mean Square (LMS)')
ylim([min(Ys)-0.5, max(Ys)+0.5])
legend('Training Phase (desired)','Training Phase (predicted)','Test Phase (desired)','Test Phase (predicted)');
mitr=10*log10(mean(E(Tr)));? % Minimum MSE of training
mits=10*log10(mean(E(Ts(1:end-time_steps+1))));? % Minimum MSE of testing
display(sprintf('Total training time is %.5f, \nTotal testing time is %.5f \nMSE value during training %.3f (dB),\nMSE value during testing %.3f (dB)', ...
training_time,testing_time,mitr,mits));
? 運行結(jié)果


? 參考文獻
[1]馬飛燕, 李向新. 基于改進麻雀搜索算法-核極限學(xué)習(xí)機耦合算法的滑坡位移預(yù)測模型[J]. 科學(xué)技術(shù)與工程, 2022(022-005).
? 完整代碼
??部分理論引用網(wǎng)絡(luò)文獻,若有侵權(quán)聯(lián)系博主刪除
?? 關(guān)注我領(lǐng)取海量matlab電子書和數(shù)學(xué)建模資料