06 矩陣計(jì)算【動(dòng)手學(xué)深度學(xué)習(xí)v2】

標(biāo)量導(dǎo)數(shù)

亞導(dǎo)數(shù)

- 將導(dǎo)數(shù)拓展到不可微的函數(shù)
梯度

- 將導(dǎo)數(shù)拓展到向量

- y 是一個(gè)標(biāo)量,x是一個(gè)向量
- 結(jié)果是一個(gè)行向量
- 在等高線上某一點(diǎn)做切線,然后作正交線(梯度和等高線是正交的:梯度指向的是值變化最大的方向,通常是往大的值走)
樣例


- y 是一個(gè)向量,x是一個(gè)標(biāo)量
- 結(jié)果也是一個(gè)列向量

- x,y 都是向量
- 結(jié)果是一個(gè)矩陣
- y 的每一個(gè)元素與向量x進(jìn)行求導(dǎo),最終得到一個(gè)矩陣



Q&A
14、導(dǎo)數(shù)的作用主要是進(jìn)行梯度下降,但容易陷入局部最優(yōu)解?請問可以使用李雅普諾夫函數(shù)或者其他方法(例如模擬退火算法)來使得下降得到全局最優(yōu)解嗎?
- 如果是凸函數(shù)的話,可以達(dá)到最優(yōu),如果不是凸函數(shù)的話,其實(shí)很難拿到最優(yōu)解,理論上,數(shù)學(xué)是可以拿到最優(yōu)解的,但是數(shù)學(xué)上幾乎是拿不到最優(yōu)解的
- 機(jī)器學(xué)習(xí)幾乎是不會(huì)處理凸函數(shù)的,如果問題能夠得到最優(yōu)解的話,就是P的問題,機(jī)器學(xué)習(xí)不關(guān)心P的問題,只關(guān)心NP的問題
15、一個(gè)向量的單位向量對其自身求導(dǎo)是多少? d[x / |x| ] / d[ x ],分子是把它變單位向量,分母是其自身
沒有白板,不進(jìn)行展開計(jì)算
16、Pytorch和MXNet是采用的自動(dòng)微分和計(jì)算圖吧,不會(huì)再使用手動(dòng)微分實(shí)現(xiàn)吧?
- 馬上會(huì)講到自動(dòng)微分和計(jì)算圖,不會(huì)讓我們手動(dòng)求導(dǎo),但是基礎(chǔ)數(shù)學(xué)希望大家知道(導(dǎo)數(shù)大概的計(jì)算過程,不需要知道整個(gè)的計(jì)算過程,但至少能夠清楚導(dǎo)數(shù)的形狀和input的形狀大概應(yīng)該是一個(gè)什么樣的關(guān)系)
----end----
標(biāo)簽: