最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

淺談高等數(shù)學(8)

2022-02-25 21:14 作者:-YD-LM-  | 我要投稿

計算是數(shù)學之基礎。

第八期? 導數(shù)與微分的運算法則

? ? ? ?在高等數(shù)學的教材中,微分是放在導數(shù)完全結束后講述的;但若是我們提前了解了微分,那么涉及導數(shù)的許多公式也就明晰許多了。然而,我們不得不使用許多嚴謹?shù)挠嬎?,初見時可能會有一些枯燥。與此同時,也希望讀者能體會嚴謹中蘊含的整潔與美觀。

一、函數(shù)和的導數(shù)

設函數(shù)u%3Du(x)%2C%5C%20v%3Dv(x),求(u%2Bv)'。推導如下:

(u%2Bv)'%3D%5Cfrac%7Bu(x%2B%5Cmathrm%20dx)%2Bv(x%2B%5Cmathrm%20dx)-u(x)-v(x)%7D%7B%5Cmathrm%20dx%7D

? ? ? ? ? ? ? ? ?%3D%5Cfrac%7Bu(x%2B%5Cmathrm%20dx)-u(x)%7D%7B%5Cmathrm%20dx%7D%2B%5Cfrac%7Bv(x%2B%5Cmathrm%20dx)-v(x)%7D%7B%5Cmathrm%20dx%7D

? ? ? ? ? ? ? ? ?%3Du'%2Bv'.

因此,函數(shù)和的導數(shù)等于它們導數(shù)的和。使用數(shù)學歸納法可以證明多個函數(shù)的情況,發(fā)現(xiàn)仍舊如此;不了解數(shù)學歸納法的請往下翻。

二、函數(shù)積的導數(shù)

設據(jù)同上,求(uv)'。推導如下:

(uv)'%3D%5Cfrac%7Bu(x%2B%5Cmathrm%20dx)v(x%2B%5Cmathrm%20dx)-u(x)v(x)%7D%7B%5Cmathrm%20dx%7D

? ? ? ? ? ?%3D%5Cfrac%7Bu(x%2B%5Cmathrm%20dx)%C2%B7%5Bv(x%2B%5Cmathrm%20dx)-v(x)%5D%2Bv(x)%C2%B7%5Bu(x%2B%5Cmathrm%20dx)-u(x)%5D%7D%7B%5Cmathrm%20dx%7D

? ? ? ? ? ?%3Du(x%2B%5Cmathrm%20dx)%C2%B7v'%2Bv(x)%C2%B7u'

? ? ? ? ? ?%3Du'v%2Buv'.

通過這個公式,我們對多元情況進行嘗試,容易得到

(uvw)'%3Du'vw%2Buv'w%2Buvw'%2C

(uvwx)'%3Du'vwx%2Buv'wx%2Buvw'x%2Buvwx'.

于是,我們猜想:

(y_1y_2y_3%5C%20...y_n)'%3D%5Csum_%7B%5Calpha_1%2B%5Calpha_2%2B%5Calpha_3%2B...%2B%5Calpha_n%3D1%5C%5C%20%0A%20%5C%20%5C%20%5C%20%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C...%2C%5Calpha_n%5Cge0%7Dy_1%5E%7B(%5Calpha_1)%7Dy_2%5E%7B(%5Calpha_2)%7Dy_3%5E%7B(%5Calpha_3)%7D......y_n%5E%7B(%5Calpha_n)%7D.

先解釋一下這個式子:由于%5Calpha_1%2B%5Calpha_2%2B...%2B%5Calpha_n%3D1且他們之和均為非負數(shù),又因為求和號的意義,他們均為自然數(shù)——因此只有可能是其中一個為1,其余的均為0.式子中,我們定義y%5E%7B(0)%7D%3Dy%2Cy%5E%7B(1)%7D%3Dy'.至于%5Calpha%0A取其他數(shù)時的情況,我們以后會講述。這個式子同樣能用數(shù)學歸納法證明,數(shù)學歸納法是說:

若(1)n%3D1時,命題p為真;

(2)若n%3Dk%5C%20(k%5Cin%20%5Cmathrm%20N%5E*)p為真,則n%3Dk%2B1p為真,

%5Cforall%20n%5Cin%5Cmathrm%20N%5E*,p為真。自然數(shù)集亦可類比。

下面是證明:首先,n%3D1時顯然成立。

(y_1y_2y_3%5C%20...y_n)'%3D%5Csum_%7B%5Calpha_1%2B%5Calpha_2%2B%5Calpha_3%2B...%2B%5Calpha_n%3D1%5C%5C%20%0A%20%5C%20%5C%20%5C%20%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C...%2C%5Calpha_n%5Cge0%7Dy_1%5E%7B(%5Calpha_1)%7Dy_2%5E%7B(%5Calpha_2)%7Dy_3%5E%7B(%5Calpha_3)%7D......y_n%5E%7B(%5Calpha_n)%7D,則

(y_1y_2y_3...y_%7Bn%2B1%7D)'%3Dy_%7Bn%2B1%7D%5E%7B(1)%7D%C2%B7%5Csum_%7B%5Calpha_1%2B%5Calpha_2%2B%5Calpha_3%2B...%2B%5Calpha_n%3D1%5C%5C%20%0A%20%5C%20%5C%20%5C%20%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C...%2C%5Calpha_n%5Cge0%7Dy_1%5E%7B(%5Calpha_1)%7Dy_2%5E%7B(%5Calpha_2)%7Dy_3%5E%7B(%5Calpha_3)%7D......y_n%5E%7B(%5Calpha_n)%7D

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%2By_1%5E%7B(0)%7Dy_2%5E%7B(0)%7Dy_3%5E%7B(0)%7D%E2%80%A6y_n%5E%7B(0)%7Dy_%7Bn%2B1%7D%5E%7B(1)%7D

%3D%5Csum_%7B%5Calpha_1%2B%5Calpha_2%2B%5Calpha_3%2B...%2B%5Calpha_%7Bn%2B1%7D%3D1%5C%5C%20%0A%20%5C%20%5C%20%5C%20%5Calpha_1%2C%5Calpha_2%2C%5Calpha_3%2C...%2C%5Calpha_%7Bn%2B1%7D%5Cge0%7Dy_1%5E%7B(%5Calpha_1)%7Dy_2%5E%7B(%5Calpha_2)%7Dy_3%5E%7B(%5Calpha_3)%7D......y_%7Bn%2B1%7D%5E%7B(%5Calpha_%7Bn%2B1%7D)%7D.

命題即得證。

三、復合函數(shù)的導數(shù)

設函數(shù)y%3Df%5B%20g(x)%5Dy%3Df(u)u%3Dg(x)兩個可導函數(shù)復合而成,求%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D。

%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20du%7D%C2%B7%5Cfrac%7B%5Cmathrm%20du%7D%7B%5Cmathrm%20dx%7D%3Df'(u)%C2%B7g'(x).這是較為直觀的一條結論。

同樣地,可以證明由多個函數(shù)u_%7Bn-1%7D%3Df_n(x)%2Cu_%7Bn-2%7D%3Df_%7Bn-1%7D(u_%7Bn-1%7D)...%2Cu_1%3Df_2(u_2)%2Cy%3Df_1(u_1)復合而成的函數(shù)y%3D(f_1%5Ccirc%20f_2%5Ccirc%E2%80%A6%5Ccirc%20f_n)(x)的導數(shù)為%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20du_1%7D%C2%B7%5Cfrac%7B%5Cmathrm%20du_1%7D%7B%5Cmathrm%20du_2%7D%C2%B7%5C%20......%5C%20%C2%B7%5Cfrac%7B%5Cmathrm%20du_%7Bn-2%7D%7D%7B%5Cmathrm%20du_%7Bn-1%7D%7D%C2%B7%5Cfrac%7B%5Cmathrm%20du_%7Bn-1%7D%7D%7B%5Cmathrm%20dx%7D.

四、函數(shù)商的導數(shù)

設函數(shù)u%3Du(x)%2Cv%3Dv(x),且v(x)%5Cnot%3D0,求%5Cbigg(%5Cfrac%20uv%5Cbigg)'

它是可以使用與函數(shù)積的導數(shù)相同的方法求解的,只是多了通分的步驟。讀者可以嘗試證明,并且教材上也有。這里給出另一種方法:

首先,求y%3D%5Cfrac1x的導數(shù):

y'%3D%5Cfrac%7B%5Cfrac1%7Bx%2B%5Cmathrm%20dx%7D-%5Cfrac1x%7D%7B%5Cmathrm%20dx%7D%3D%5Cfrac%7Bx-(x%2B%5Cmathrm%20dx)%7D%7Bx(x%2B%5Cmathrm%20dx)%5Cmathrm%20dx%7D%3D-%5Cfrac%7B%5Cmathrm%20dx%7D%7Bx%5E2%5Cmathrm%20dx%7D%3D-%5Cfrac1%7Bx%5E2%7D.

于是,y%3D%5Cfrac1%7Bv%7Dx的導數(shù)為

-%5Cfrac%7Bv'%7D%7Bv%5E2%7D.

最后,y%3D%5Cfrac%20uvx的導數(shù)為

y'%3D%5Cbig(u%C2%B7%5Cfrac1v%5Cbig)'%3D%5Cfrac%7Bu'%7Dv-%5Cfrac%7Buv'%7D%7Bv%5E2%7D%3D%5Cfrac%7Bu'v-uv'%7D%7Bv%5E2%7D.

五、反函數(shù)的導數(shù)

其與復合函數(shù)一樣也非常直觀。設函數(shù)x%3Df(y)在某區(qū)間內具有反函數(shù)y%3Df%5E%7B-1%7D(x),

%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Cmathrm%20dx%7D%7B%5Cmathrm%20dy%7D%7D%3D%5Cfrac%7B1%7D%7Bf'(y)%7D.

需要注意的是,這里是用原函數(shù)對y求導,而非x。

對于其幾何意義,還有一種深入的理解:

圖1? 反函數(shù)求導的幾何意義

如圖是y_1%3D%5Csin%20x(藍)與y_2%3D%5Carcsin%20x(紅)的圖像,由反函數(shù)的意義可知它們的圖像是關于y%3Dx對稱的。假如我們要考察反函數(shù)在B(%5Csin%20x_0%2Cx_0)(為了方便起見,我們只考慮(0%2C%5Cfrac%5Cpi2)內的部分)處的導數(shù),則對應的,原函數(shù)上的點應為A(x_0%2C%5Csin%20x_0)。原函數(shù)切線交x軸于C,交y軸于E;反函數(shù)切線交x軸于F,交y軸于D。由于關于y%3Dx對稱,則可知%E2%88%A0ECO%3D%5Cfrac%5Cpi2-%E2%88%A0FDO.,即%5Ctan%E2%88%A0ECO%5Ctan%E2%88%A0FDO%3D1.而這兩個角恰好分別是原函數(shù)與反函數(shù)的傾角,故有

y_1'%5Cbigg%7C_%7Bx%3Dx_0%7D%C2%B7y_2'%5Cbigg%7C_%7Bx%3D%5Csin%20x_0%7D%3D1.


至于微分運算法則,只需利用%5Cmathrm%20dy%3Df'(x)%5Cmathrm%20dx變形即可,此處就不詳述了。

淺談高等數(shù)學(8)的評論 (共 條)

分享到微博請遵守國家法律
保山市| 靖宇县| 潼南县| 辽阳市| 钟祥市| 潜山县| 云林县| 潜江市| 揭东县| 金乡县| 蚌埠市| 茂名市| 房山区| 新乐市| 林芝县| 大石桥市| 巢湖市| 连州市| 马关县| 策勒县| 思茅市| 凌云县| 虎林市| 林芝县| 塔城市| 神农架林区| 新民市| 思南县| 三河市| 黔西县| 忻州市| 韶山市| 游戏| 河东区| 孟津县| 凤翔县| 正蓝旗| 东莞市| 汝州市| 金川县| 本溪市|