表觀和遺傳在衰老中共同進(jìn)退?看表觀遺傳衰老如何貫穿衰老主線
閱讀重磅綜述,快捷get衰老系統(tǒng)知識(shí)。大家好,這里是時(shí)光派《重磅綜述》欄目,在這里,派派為你挑選大咖中的大咖,選讀經(jīng)典中的經(jīng)典。本期的主題是,國內(nèi)學(xué)者重磅之作,衰老重要標(biāo)識(shí)表觀遺傳衰老相關(guān)綜述——《衰老的表觀遺傳調(diào)控:對衰老和疾病干預(yù)的啟示》。
衰老生物學(xué)發(fā)展近百年,衰老相關(guān)的九大標(biāo)識(shí)早已深入人心,每一個(gè)都在衰老過程中發(fā)揮著無可替代的作用,但每一個(gè)衰老表現(xiàn)、每一種干預(yù)手段,大多針對多種衰老標(biāo)識(shí)聯(lián)合作用,在和其他衰老標(biāo)識(shí)“合作”方面,表觀遺傳衰老尤為明顯。
11月初,我國著名學(xué)者劉光慧教授、朱芳芳教授、任捷教授牽頭,中國科學(xué)院和上海交通大學(xué)生物醫(yī)學(xué)研究院多名學(xué)者聯(lián)合編撰,在生物學(xué)頂刊《Nature》子刊上發(fā)文,綜述了表觀遺傳調(diào)控在衰老生物學(xué)中的堅(jiān)實(shí)理論基礎(chǔ)地位和多方向靶點(diǎn)庫作用,并就表觀遺傳的角度,為大家提供了各方面衰老干預(yù)的建議[1]。
限于篇幅,文中僅展示綜述核心內(nèi)容,想深入了解的讀者可至文末領(lǐng)取原文及全文翻譯文檔。
*該資料僅供科研學(xué)習(xí)之用,未經(jīng)授權(quán)嚴(yán)禁轉(zhuǎn)載及使用。
*如有科學(xué)謬誤敬請專家與讀者朋友聯(lián)系時(shí)光派公眾號指正。
表觀遺傳學(xué)如同它名字所表達(dá)的那樣,把“表觀”和“遺傳”聯(lián)系起來研究,代表一種在不改變基因組DNA序列的情況下調(diào)節(jié)基因組功能的可逆機(jī)制[1]。而在原因機(jī)制尚未完全被破解的衰老生物學(xué)中,這一特性尤為突顯。
1935年,衰老生物學(xué)正式起航;1953年,DNA結(jié)構(gòu)被發(fā)現(xiàn);14年后的1967年,表觀遺傳便正式入駐衰老生物學(xué)領(lǐng)域[2],從此開始和衰老生物學(xué)攜手并進(jìn)。
圖注:衰老相關(guān)表觀遺傳學(xué)的部分發(fā)展歷程
表觀遺傳在衰老過程中的改變主要可以分為四大類:DNA甲基化、組蛋白修飾、染色質(zhì)重塑和RNA修飾。
No.1
DNA甲基化
當(dāng)一段基因的DNA上被安裝了甲基,那么這段基因就不會(huì)表達(dá)[3-4],而衰老的重要表現(xiàn)就是,該沉默的基因沒有安裝甲基,而該表達(dá)的基因卻被甲基扼制[5-6]。
圖注:DNA甲基化模式及其與衰老的關(guān)系
No.2
組蛋白修飾
組蛋白修飾可以細(xì)分為:甲基化、乙?;⒘姿峄?、泛素化、ADP核糖基化等[7]。其中最常見,且作為經(jīng)典案例廣為流傳的是:組蛋白乙?;L壽蛋白sirtuins[8-9]。
圖注:組蛋白乙酰化的經(jīng)典案例:長壽蛋白sirtuins
No.3
染色質(zhì)重塑
染色質(zhì)重塑是細(xì)胞核內(nèi)的一系列全基因組變化,從組蛋白成分和修飾的變化到染色質(zhì)整體結(jié)構(gòu)的改變,在細(xì)胞衰老過程中,染色質(zhì)重塑也發(fā)揮著重要的作用[10]。
No.4
RNA修飾
DNA轉(zhuǎn)錄成RNA,而RNA翻譯成蛋白質(zhì),RNA承擔(dān)著基因和表型之間的紐帶的作用,所以表觀遺傳不僅包括對DNA及其結(jié)合蛋白(組蛋白)的修飾,也包含對RNA的修飾[11]。
因篇幅有限,表觀遺傳調(diào)控的原理這里不加贅述,感興趣的讀者請至文末,添加hebe即可領(lǐng)取全文翻譯。
表觀遺傳衰老為衰老生物學(xué)奠定了堅(jiān)實(shí)的理論基礎(chǔ),同時(shí)在各種抗衰手段中,也少不了表觀遺傳調(diào)控的身影。
在這一部分,論文總結(jié)了目前主要使用的抗衰干預(yù)手段:小分子藥物、重編程、衰老細(xì)胞清除策略和健康行為干預(yù)手段,并討論了它們和表觀遺傳調(diào)控之間的相互作用。
圖注:目前常見的抗衰干預(yù)手段
No.1
小分子藥物
小分子藥物雖然靶靶點(diǎn)相對單一,但是影響的衰老途徑卻不止一條,在干預(yù)衰老和治療衰老相關(guān)疾病方面也極具潛力。
NAD+前體
大家耳熟能詳?shù)目顾パa(bǔ)劑成分NMN、NR等都是NAD+前體,在這些NAD+前體的影響下,隨年齡增加而逐漸減少的體內(nèi)NAD+可以得到補(bǔ)充,繼而通過DNA修復(fù)和表觀遺傳調(diào)控發(fā)揮增加線粒體功能、改善認(rèn)知功能等功效[12-13],并延長線蟲、果蠅等模式生物的壽命[14]。
與表觀遺傳的相互影響
長壽蛋白sirtuins對組蛋白去乙?;挠绊懜叨纫蕾囉贜AD+,因此,NAD+在衰老表觀遺傳調(diào)控中是不可或缺的[15]。
臨床試驗(yàn)進(jìn)展
臨床試驗(yàn)結(jié)果才是抗衰相關(guān)研究的金標(biāo)準(zhǔn),而NAD+前體已經(jīng)在臨床試驗(yàn)中證實(shí)了自己。
NMN可增加糖尿病前期女性的肌肉胰島素敏感性、胰島素信號傳導(dǎo)和肌肉重塑,并可預(yù)防與衰老相關(guān)的肌肉功能障礙,以及改善有氧能力、心血管健康、睡眠質(zhì)量、疲勞和身體機(jī)能等[16-18];NR可抑制心力衰竭患者和降低帕金森病患者的炎性衰老情況[19]。
STACS
STACS是長壽蛋白sirtuins的激活劑[20],目前的STACS藥物主要有白藜蘆醇、SRT1720等,能通過對sirtuins的激活發(fā)揮增加胰島素敏感性和運(yùn)動(dòng)功能、減輕血管內(nèi)皮功能障礙等功能,并延長線蟲、果蠅、蜜蜂和魚類等的壽命[21]。
與表觀遺傳的相互影響
直接激活sirtuins,改變組蛋白的去乙?;健?/p>
臨床試驗(yàn)進(jìn)展
STACS在臨床前研究中表現(xiàn)出鼓舞人心的效果,但在臨床試驗(yàn)中的結(jié)果并不那么令人滿意,沒有顯著的抗衰臨床反應(yīng)[22]。
二甲雙胍
二甲雙胍是著名的降糖藥,也是近些年熱門的抗衰潛力物質(zhì),能通過廣泛的表觀遺傳調(diào)控發(fā)揮作用,能改善認(rèn)知障礙和神經(jīng)變性[23]、慢性腎病[24]、白內(nèi)障[25]、心臟線粒體功能障礙[26]等多種衰老相關(guān)疾病,并可延長小鼠壽命14%[27]。
與表觀遺傳的相互影響
二甲雙胍可以通過改變S-腺苷甲硫氨酸(SAMe)/S-腺苷同型半胱氨酸(SAH)的比例來影響組蛋白甲基化[28];增加Bdnf基因的DNA甲基化水平[29];還可以調(diào)整小鼠和人類的microRNA表達(dá)水平[30-31]。
臨床試驗(yàn)進(jìn)展
臨床數(shù)據(jù)顯示,二甲雙胍可以降低糖尿病、心血管疾病、脆弱和認(rèn)知障礙的發(fā)病率,并改善外周血單核細(xì)胞中潛在的長壽效應(yīng)因子[32]。
雷帕霉素
雷帕霉素是21世紀(jì)以來炙手可熱的抗衰藥物、美國抗衰金字項(xiàng)目ITP計(jì)劃的招牌成果,已被證實(shí)可以改善一系列衰老相關(guān)病理狀況,包括心血管功能障礙[33]、神經(jīng)變性[34]、骨骼肌老化[35]、卵巢衰老[36]、衰老相關(guān)聽力損失[37]等,并能以劑量依賴的方式延長雄性和雌性小鼠的中位和最大壽命[38]。
與表觀遺傳的相互作用
雷帕霉素能減弱大腦結(jié)構(gòu)中與衰老相關(guān)的DNA甲基化變化,影響大腦衰老,還能減緩肝臟衰老的表觀遺傳特征[39]。
臨床試驗(yàn)進(jìn)展
盡管雷帕霉素在臨床前研究中顯示出令人興奮的效果,但在臨床試驗(yàn)中卻不盡人意,雷帕霉素并沒有改善人類受試者的認(rèn)知功能或身體機(jī)能[40],也就意味著,雷帕霉素仍需要更多的實(shí)驗(yàn)研究。
圖注:各種抗衰小分子藥物的抗衰延壽效果
除了上述幾種,其他多種小分子藥物也都存在巨大的抗衰潛力,如抗糖尿病藥物(鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白-2抑制劑、阿卡波糖)、天然化合物(沒食子酸、槲皮素)、抗氧化分子(N-乙?;?L-半胱氨酸(NAC)、維生素C 、亞甲藍(lán))、抗高血壓藥物(血管緊張素轉(zhuǎn)換酶抑制劑和血管緊張素受體阻滯劑),氯喹、阿司匹林、尿苷等等,但它們和表觀遺傳之間的關(guān)系還有待進(jìn)一步研究。
No.2
細(xì)胞重編程策略
細(xì)胞重編程是近兩年最具潛力、研發(fā)經(jīng)費(fèi)最充足的抗衰干預(yù)手段,通過將體細(xì)胞逆轉(zhuǎn)到年輕狀態(tài)來達(dá)到機(jī)體抗衰老的目的。
短短時(shí)間內(nèi),細(xì)胞重編程也的確取得了驚人的抗衰效果:為期13天的細(xì)胞重編程顯著降低了人成纖維細(xì)胞的表觀遺傳年齡[41],生命早期的瞬時(shí)重編程也足以將轉(zhuǎn)基因早衰小鼠的壽命延長15%[42]。
與表觀遺傳的相互作用
細(xì)胞重編程關(guān)鍵基因OSKM的持久表達(dá)可導(dǎo)致廣泛的染色質(zhì)重塑,從而逆轉(zhuǎn)細(xì)胞狀態(tài),使其年輕化[43]。
圖注:染色質(zhì)重塑在衰老過程中的作用機(jī)制
No.3
健康行為干預(yù)
和小分子藥物和細(xì)胞重編程相比,健康行為干預(yù)才是延緩衰老的最有效和最簡單的方法,隨著人們對積極健康干預(yù)的認(rèn)識(shí)不斷提高,各種研究表明,健康的生活方式可以改善不同動(dòng)物和人類的衰老相關(guān)特征。
飲食/熱量限制
作為“不打針不吃藥”的抗衰干預(yù)方法典范,飲食/熱量限制早在上個(gè)世紀(jì)衰老生物學(xué)伊始的時(shí)候便取得了世人的青睞。經(jīng)過近一百年的錘煉,飲食/熱量限制已被證明能減緩生物衰老,改善肝臟功能,減少氧化應(yīng)激和衰老相關(guān)疾病的發(fā)病率[44],并延長實(shí)驗(yàn)動(dòng)物的壽命[45]。
與表觀遺傳的相互作用
熱量限制能顯著抑制RNAm6A閱讀蛋白的衰老相關(guān)下調(diào)[46],且在相關(guān)實(shí)驗(yàn)中,受試動(dòng)物也能表現(xiàn)出表觀遺傳年齡的降低。
臨床試驗(yàn)進(jìn)展
飲食/熱量限制早已被應(yīng)用在人類身上,臨床試驗(yàn)結(jié)果表明,熱量限制可以減弱與衰老有關(guān)的生物標(biāo)志物,如降低體重、增強(qiáng)胰島素敏感性和葡萄糖耐受性,并改善主要的心臟代謝危險(xiǎn)因素[47];同時(shí),飲食干預(yù)已被證明可以減緩基于DNA甲基化的衰老生物標(biāo)志物[48]。
運(yùn)動(dòng)
運(yùn)動(dòng)則是行為干預(yù)中的另一大“巨頭”,雖然簡單易行,但抗衰效果多多。通過運(yùn)動(dòng),生物體能恢復(fù)活力[49]、并有益于保護(hù)神經(jīng)[50]和延長壽命[51]。
與表觀遺傳的相互作用
運(yùn)動(dòng)可重塑骨骼肌中關(guān)鍵基因啟動(dòng)子上的DNA甲基化情況[52],還可通過通過抑制組蛋白去乙?;瘺]的功能來影響基因表達(dá)模式[53],此外,運(yùn)動(dòng)還可以調(diào)節(jié)幾種有益miRNA的表達(dá)[54]。
臨床試驗(yàn)進(jìn)展
運(yùn)動(dòng)相關(guān)的臨床干預(yù)研究中發(fā)現(xiàn),運(yùn)動(dòng)可以逆轉(zhuǎn)一系列與衰老有關(guān)的疾病,包括心力衰竭[55]、認(rèn)知能力下降[56]、動(dòng)脈粥樣硬化[57]和胰島素抵抗[58]等,并在改善的過程中與表觀遺傳調(diào)控密切相關(guān)[59]。
圖注:飲食限制和運(yùn)動(dòng)等行為干預(yù)手段在抗衰中的作用
除飲食限制和運(yùn)動(dòng)外,健康行為干預(yù)中,晝夜節(jié)律的調(diào)整也能廣泛影響生物的衰老進(jìn)程和速度,但是它和表觀遺傳調(diào)控之間的相互作用尚不明確,還需要更多的研究來發(fā)現(xiàn)和證實(shí)。
除了小分子藥物、細(xì)胞重編程和健康行為干預(yù),衰老細(xì)胞清除策略(senolytics)也是抗衰干預(yù)手段中十分重要的一種,能達(dá)到非常顯著的抗衰延壽功效,但其和表觀遺傳調(diào)控的關(guān)系相對較弱,仍需要進(jìn)一步研究。
———///———
與其說是重要的衰老標(biāo)識(shí)之一,表觀遺傳衰老更像是一根貫穿衰老的線,在這根線上,不僅掛滿了衰老的原理、機(jī)制和作用靶點(diǎn),也連接了很多抗衰老干預(yù)手段。
但是其他衰老標(biāo)識(shí)是不是也會(huì)像表觀遺傳衰老一樣,成為串起衰老的一根根線呢?表觀遺傳衰老這根線和其他衰老標(biāo)識(shí)之間,又存在哪些連結(jié)和串?dāng)_呢?這些都還需要未來的研究來探索,當(dāng)我們理清了衰老這張“網(wǎng)”,或許那時(shí)破解衰老便指日可待。
參考文獻(xiàn)
[1] Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., & Liu, G. H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal transduction and targeted therapy, 7(1), 374. https://doi.org/10.1038/s41392-022-01211-8
[2] Berdyshev, G. D., Korotaev, G. K., Boiarskikh, G. V., & Vaniushin, B. F. (1967). Nukleotidny? sostav DNK i RNK somaticheskikh tkane? gorbushi i ego izmenenie v technie neresta [Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning]. Biokhimiia (Moscow, Russia), 32(5), 988–993.
[3] Sailani, M. R., Halling, J. F., M?ller, H. D., Lee, H., Plomgaard, P., Pilegaard, H., Snyder, M. P., & Regenberg, B. (2019). Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Scientific reports, 9(1), 3272. https://doi.org/10.1038/s41598-018-37895-8
[4] Maegawa, S., Hinkal, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L. A., & Issa, J. P. (2010). Widespread and tissue specific age-related DNA methylation changes in mice. Genome research, 20(3), 332–340. https://doi.org/10.1101/gr.096826.109
[5] Wilson, V. L., Smith, R. A., Ma, S., & Cutler, R. G. (1987). Genomic 5-methyldeoxycytidine decreases with age. The Journal of biological chemistry, 262(21), 9948–9951.
[6] Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B., & Issa, J. P. (1998). Aging and DNA methylation in colorectal mucosa and cancer. Cancer research, 58(23), 5489–5494.
[7] Kouzarides T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. https://doi.org/10.1016/j.cell.2007.02.005
[8] Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M. M., Mills, K. D., Patel, P., Hsu, J. T., Hong, A. L., Ford, E., Cheng, H. L., Kennedy, C., Nunez, N., Bronson, R., Frendewey, D., … Alt, F. W. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2), 315–329. https://doi.org/10.1016/j.cell.2005.11.044
[9] Gong, H., Pang, J., Han, Y., Dai, Y., Dai, D., Cai, J., & Zhang, T. M. (2014). Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Molecular medicine reports, 10(6), 3296–3302. https://doi.org/10.3892/mmr.2014.2648
[10] Huang, B., Zhong, D., Zhu, J., An, Y., Gao, M., Zhu, S., Dang, W., Wang, X., Yang, B., & Xie, Z. (2020). Inhibition of histone acetyltransferase GCN5 extends lifespan in both yeast and human cell lines. Aging cell, 19(4), e13129. https://doi.org/10.1111/acel.13129
[11] Liu, Z., Ji, Q., Ren, J., Yan, P., Wu, Z., Wang, S., Sun, L., Wang, Z., Li, J., Sun, G., Liang, C., Sun, R., Jiang, X., Hu, J., Ding, Y., Wang, Q., Bi, S., Wei, G., Cao, G., Zhao, G., … Liu, G. H. (2022). Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental cell, 57(11), 1347–1368.e12. https://doi.org/10.1016/j.devcel.2022.05.004
[12] Frye, M., Harada, B. T., Behm, M., & He, C. (2018). RNA modifications modulate gene expression during development. Science (New York, N.Y.), 361(6409), 1346–1349. https://doi.org/10.1126/science.aau1646
[13] Yaku, K., Okabe, K., & Nakagawa, T. (2018). NAD metabolism: Implications in aging and longevity. Ageing research reviews, 47, 1–17. https://doi.org/10.1016/j.arr.2018.05.006
[14] Gu, X. , Yao, H. , Ilmin, K. , & Wang, G. . (2022). Small-molecule activation of nampt as a potential neuroprotective strategy. Life Medicine.
[15] Fang, E. F., Hou, Y., Lautrup, S., Jensen, M. B., Yang, B., SenGupta, T., Caponio, D., Khezri, R., Demarest, T. G., Aman, Y., Figueroa, D., Morevati, M., Lee, H. J., Kato, H., Kassahun, H., Lee, J. H., Filippelli, D., Okur, M. N., Mangerich, A., Croteau, D. L., … Bohr, V. A. (2019). NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature communications, 10(1), 5284. https://doi.org/10.1038/s41467-019-13172-8
[16] Shen, W. et al. Peroxisome proliferator-activated receptor γ coactivator 1α maintains NAD+ bioavailability protecting against steatohepatitis. Life Med. lnac031
[17] Yoshino, M., Yoshino, J., Kayser, B. D., Patti, G. J., Franczyk, M. P., Mills, K. F., Sindelar, M., Pietka, T., Patterson, B. W., Imai, S. I., & Klein, S. (2021). Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science (New York, N.Y.), 372(6547), 1224–1229. https://doi.org/10.1126/science.abe9985
[18] Igarashi, M., Nakagawa-Nagahama, Y., Miura, M., Kashiwabara, K., Yaku, K., Sawada, M., Sekine, R., Fukamizu, Y., Sato, T., Sakurai, T., Sato, J., Ino, K., Kubota, N., Nakagawa, T., Kadowaki, T., & Yamauchi, T. (2022). Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. npj aging, 8(1), 5. https://doi.org/10.1038/s41514-022-00084-z
[19] Kim, M., Seol, J., Sato, T., Fukamizu, Y., Sakurai, T., & Okura, T. (2022). Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients, 14(4), 755. https://doi.org/10.3390/nu14040755
[20] Brakedal, B., D?lle, C., Riemer, F., Ma, Y., Nido, G. S., Skeie, G. O., Craven, A. R., Schwarzlmüller, T., Brekke, N., Diab, J., Sverkeli, L., Skjeie, V., Varhaug, K., Tysnes, O. B., Peng, S., Haugarvoll, K., Ziegler, M., Grüner, R., Eidelberg, D., & Tzoulis, C. (2022). The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease. Cell metabolism, 34(3), 396–407.e6. https://doi.org/10.1016/j.cmet.2022.02.001
[21] Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B., & Sinclair, D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191–196. https://doi.org/10.1038/nature01960
[22] Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature reviews. Molecular cell biology, 17(11), 679–690. https://doi.org/10.1038/nrm.2016.93
[23] Dai, H., Sinclair, D. A., Ellis, J. L., & Steegborn, C. (2018). Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacology & therapeutics, 188, 140–154. https://doi.org/10.1016/j.pharmthera.2018.03.004
[24] Hong, S., Nagayach, A., Lu, Y., Peng, H., Duong, Q. A., Pham, N. B., Vuong, C. A., & Bazan, N. G. (2021). A high fat, sugar, and salt Western diet induces motor-muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS neuroscience & therapeutics, 27(12), 1458–1471. https://doi.org/10.1111/cns.13726
[25] Kim, H., Yu, M. R., Lee, H., Kwon, S. H., Jeon, J. S., Han, D. C., & Noh, H. (2021). Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging cell, 20(2), e13317. https://doi.org/10.1111/acel.13317
[26] Chen, M., Fu, Y., Wang, X., Wu, R., Su, D., Zhou, N., & Qi, Y. (2022). Metformin protects lens epithelial cells against senescence in a naturally aged mouse model. Cell death discovery, 8(1), 8. https://doi.org/10.1038/s41420-021-00800-w
[27] Chen, Q., Thompson, J., Hu, Y., & Lesnefsky, E. J. (2021). Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging, 13(6), 7828–7845. https://doi.org/10.18632/aging.202858
[28] Smith, D. L., Jr, Elam, C. F., Jr, Mattison, J. A., Lane, M. A., Roth, G. S., Ingram, D. K., & Allison, D. B. (2010). Metformin supplementation and life span in Fischer-344 rats. The journals of gerontology. Series A, Biological sciences and medical sciences, 65(5), 468–474. https://doi.org/10.1093/gerona/glq033
[29] Cabreiro, F., Au, C., Leung, K. Y., Vergara-Irigaray, N., Cochemé, H. M., Noori, T., Weinkove, D., Schuster, E., Greene, N. D., & Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 153(1), 228–239. https://doi.org/10.1016/j.cell.2013.02.035
[30] Wang, Y., Liu, B., Yang, Y., Wang, Y., Zhao, Z., Miao, Z., & Zhu, J. (2019). Metformin exerts antidepressant effects by regulated DNA hydroxymethylation. Epigenomics, 11(6), 655–667. https://doi.org/10.2217/epi-2018-0187
[31] Noren Hooten, N., Martin-Montalvo, A., Dluzen, D. F., Zhang, Y., Bernier, M., Zonderman, A. B., Becker, K. G., Gorospe, M., de Cabo, R., & Evans, M. K. (2016). Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging cell, 15(3), 572–581. https://doi.org/10.1111/acel.12469
[32] Zhang, S., Zhang, R., Qiao, P., Ma, X., Lu, R., Wang, F., Li, C., E, L., & Liu, H. (2021). Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem cells international, 2021, 6616240. https://doi.org/10.1155/2021/6616240
[33] Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., Nathan, D. M., & Diabetes Prevention Program Research Group (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 346(6), 393–403. https://doi.org/10.1056/NEJMoa012512
[34] Quarles, E., Basisty, N., Chiao, Y. A., Merrihew, G., Gu, H., Sweetwyne, M. T., Fredrickson, J., Nguyen, N. H., Razumova, M., Kooiker, K., Moussavi-Harami, F., Regnier, M., Quarles, C., MacCoss, M., & Rabinovitch, P. S. (2020). Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging cell, 19(2), e13086. https://doi.org/10.1111/acel.13086
[35] Van Skike, C. E., Hussong, S. A., Hernandez, S. F., Banh, A. Q., DeRosa, N., & Galvan, V. (2021). mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(19), 4305–4320. https://doi.org/10.1523/JNEUROSCI.2144-20.2021
[36] Ham, D. J., B?rsch, A., Chojnowska, K., Lin, S., Leuchtmann, A. B., Ham, A. S., Thürkauf, M., Delezie, J., Furrer, R., Burri, D., Sinnreich, M., Handschin, C., Tintignac, L. A., Zavolan, M., Mittal, N., & Rüegg, M. A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nature communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
[37] Garcia, D. N., Saccon, T. D., Pradiee, J., Rincón, J. A. A., Andrade, K. R. S., Rovani, M. T., Mondadori, R. G., Cruz, L. A. X., Barros, C. C., Masternak, M. M., Bartke, A., Mason, J. B., & Schneider, A. (2019). Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience, 41(4), 395–408. https://doi.org/10.1007/s11357-019-00087-x
[38] Altschuler, R. A., Kabara, L., Martin, C., Kanicki, A., Stewart, C. E., Kohrman, D. C., & Dolan, D. F. (2021). Rapamycin Added to Diet in Late Mid-Life Delays Age-Related Hearing Loss in UMHET4 Mice. Frontiers in cellular neuroscience, 15, 658972. https://doi.org/10.3389/fncel.2021.658972
[39] Strong, R., Miller, R. A., Bogue, M., Fernandez, E., Javors, M. A., Libert, S., Marinez, P. A., Murphy, M. P., Musi, N., Nelson, J. F., Petrascheck, M., Reifsnyder, P., Richardson, A., Salmon, A. B., Macchiarini, F., & Harrison, D. E. (2020). Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects. Aging cell, 19(11), e13269. https://doi.org/10.1111/acel.13269
[40] Yin, Z., Guo, X., Qi, Y., Li, P., Liang, S., Xu, X., & Shang, X. (2022). Dietary Restriction and Rapamycin Affect Brain Aging in Mice by Attenuating Age-Related DNA Methylation Changes. Genes, 13(4), 699. https://doi.org/10.3390/genes13040699
[41] Kraig, E., Linehan, L. A., Liang, H., Romo, T. Q., Liu, Q., Wu, Y., Benavides, A. D., Curiel, T. J., Javors, M. A., Musi, N., Chiodo, L., Koek, W., Gelfond, J. A. L., & Kellogg, D. L., Jr (2018). A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Experimental gerontology, 105, 53–69. https://doi.org/10.1016/j.exger.2017.12.026
[42] Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C. D., Hernando-Herraez, I., Stubbs, T. M., Milagre, I., & Reik, W. (2022). Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife, 11, e71624. https://doi.org/10.7554/eLife.71624
[43] Alle, Q., Le Borgne, E., Bensadoun, P., Lemey, C., Béchir, N., Gabanou, M., Estermann, F., Bertrand-Gaday, C., Pessemesse, L., Toupet, K., Desprat, R., Vialaret, J., Hirtz, C., No?l, D., Jorgensen, C., Casas, F., Milhavet, O., & Lemaitre, J. M. (2022). A single short reprogramming early in life initiates and propagates an epigenetically related mechanism improving fitness and promoting an increased healthy lifespan. Aging cell, 21(11), e13714. https://doi.org/10.1111/acel.13714
[44] Koche, R. P., Smith, Z. D., Adli, M., Gu, H., Ku, M., Gnirke, A., Bernstein, B. E., & Meissner, A. (2011). Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell stem cell, 8(1), 96–105. https://doi.org/10.1016/j.stem.2010.12.001
[45] Rochon, J., Bales, C. W., Ravussin, E., Redman, L. M., Holloszy, J. O., Racette, S. B., Roberts, S. B., Das, S. K., Romashkan, S., Galan, K. M., Hadley, E. C., Kraus, W. E., & CALERIE Study Group (2011). Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. The journals of gerontology. Series A, Biological sciences and medical sciences, 66(1), 97–108. https://doi.org/10.1093/gerona/glq168
[46] Weindruch, R., Walford, R. L., Fligiel, S., & Guthrie, D. (1986). The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. The Journal of nutrition, 116(4), 641–654. https://doi.org/10.1093/jn/116.4.641
[47] Ma, S., Sun, S., Geng, L., Song, M., Wang, W., Ye, Y., Ji, Q., Zou, Z., Wang, S., He, X., Li, W., Esteban, C. R., Long, X., Guo, G., Chan, P., Zhou, Q., Belmonte, J. C. I., Zhang, W., Qu, J., & Liu, G. H. (2020). Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 180(5), 984–1001.e22. https://doi.org/10.1016/j.cell.2020.02.008
[48] Kraus, W. E., Bhapkar, M., Huffman, K. M., Pieper, C. F., Krupa Das, S., Redman, L. M., Villareal, D. T., Rochon, J., Roberts, S. B., Ravussin, E., Holloszy, J. O., Fontana, L., & CALERIE Investigators (2019). 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. The lancet. Diabetes & endocrinology, 7(9), 673–683. https://doi.org/10.1016/S2213-8587(19)30151-2
[49] Fitzgerald, K. N., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., Henkel, J., Twedt, M. W., Giannopoulou, D., Herdell, J., Logan, S., & Bradley, R. (2021). Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging, 13(7), 9419–9432. https://doi.org/10.18632/aging.202913
[50] Rubenstein, A. B., Hinkley, J. M., Nair, V. D., Nudelman, G., Standley, R. A., Yi, F., Yu, G., Trappe, T. A., Bamman, M. M., Trappe, S. W., Sparks, L. M., Goodpaster, B. H., Vega, R. B., Sealfon, S. C., Zaslavsky, E., & Coen, P. M. (2022). Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. American journal of physiology. Endocrinology and metabolism, 322(3), E260–E277. https://doi.org/10.1152/ajpendo.00378.2021
[51] van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(38), 8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005
[52] Murach, K. A., Dimet-Wiley, A. L., Wen, Y., Brightwell, C. R., Latham, C. M., Dungan, C. M., Fry, C. S., & Watowich, S. J. (2022). Late-life exercise mitigates skeletal muscle epigenetic aging. Aging cell, 21(1), e13527. https://doi.org/10.1111/acel.13527
[53] Barrès, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O'Gorman, D. J., & Zierath, J. R. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. Cell metabolism, 15(3), 405–411. https://doi.org/10.1016/j.cmet.2012.01.001
[54] Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z., & Fan, G. (2011). Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. The European journal of neuroscience, 33(3), 383–390. https://doi.org/10.1111/j.1460-9568.2010.07508.x
[55] Ogasawara, R., Akimoto, T., Umeno, T., Sawada, S., Hamaoka, T., & Fujita, S. (2016). MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiological genomics, 48(4), 320–324. https://doi.org/10.1152/physiolgenomics.00124.2015
[56] Hieda, M., Sarma, S., Hearon, C. M., Jr, MacNamara, J. P., Dias, K. A., Samels, M., Palmer, D., Livingston, S., Morris, M., & Levine, B. D. (2021). One-Year Committed Exercise Training Reverses Abnormal Left Ventricular Myocardial Stiffness in Patients With Stage B Heart Failure With Preserved Ejection Fraction. Circulation, 144(12), 934–946. https://doi.org/10.1161/CIRCULATIONAHA.121.054117
[57] Ngandu, T., Lehtisalo, J., Solomon, A., Lev?lahti, E., Ahtiluoto, S., Antikainen, R., B?ckman, L., H?nninen, T., Jula, A., Laatikainen, T., Lindstr?m, J., Mangialasche, F., Paajanen, T., Pajala, S., Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., Soininen, H., … Kivipelto, M. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet (London, England), 385(9984), 2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5
[58] Madden, K. M., Lockhart, C., Cuff, D., Potter, T. F., & Meneilly, G. S. (2009). Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Diabetes care, 32(8), 1531–1535. https://doi.org/10.2337/dc09-0149
[59] Lanza, I. R., Short, D. K., Short, K. R., Raghavakaimal, S., Basu, R., Joyner, M. J., McConnell, J. P., & Nair, K. S. (2008). Endurance exercise as a countermeasure for aging. Diabetes, 57(11), 2933–2942. https://doi.org/10.2337/db08-0349