吃不起“長壽藥”NMN,便宜大碗的煙酰胺NAM能成為平替嗎?

雖說已是2021年,但“富商不老藥”NMN家族仍是一番欣欣向榮之景,全新的積極研究結(jié)果也不斷涌現(xiàn)。像是近期NAD +被發(fā)現(xiàn)能輔助癌癥免疫治療[1],為NMN與癌癥的關(guān)聯(lián)再度畫下濃墨重彩的一筆。
然而,不同于以往直接補(bǔ)充NMN,該項(xiàng)研究使用煙酰胺(NAM)作為前體物質(zhì)來提升NAD +水平。既然NMN那么貴(動輒大幾千),我能否用物美價(jià)廉的NAM作為替代品呢?看完NAM的科普,你定然會有答案。

圖注:NAM分子結(jié)構(gòu)及常用名稱。圖源[2]

是糙皮病的救星,也是肌膚年輕的秘密
1937年,正值糙皮病盛行之時,NAM如天降珍寶,成為眾多患者的救命良藥[3],其副作用小[4],易溶解于水、吸收較好[5],因此成為了治療糙皮病的首選藥物。

在幫助人類終結(jié)糙皮病后,NAM依舊扎根老本行,與困擾人類的多種皮膚健康問題斡旋,逐步奠定了在肌膚護(hù)理領(lǐng)域的王者地位。
例如,人體試驗(yàn)已經(jīng)證實(shí),僅需外用適宜濃度NAM,2周后就能顯著降低皮脂排泄率[6],還能通過抑制痤瘡桿菌誘導(dǎo)的Toll樣受體2激活,降低體內(nèi)促炎因子IL-8水平[7],消炎、抗氧化、加快血管新生促進(jìn)傷口愈合[8]。
除此外,真正讓NAM名聲大噪,還是其偶然間被發(fā)掘,能通過阻斷黑色素轉(zhuǎn)移達(dá)到的美白功效[9-11]。進(jìn)一步研究發(fā)現(xiàn),NAM能促進(jìn)表皮細(xì)胞膠原蛋白[12]及神經(jīng)酰胺合成,改善肌膚屏障[13],再加上調(diào)控p53蛋白表達(dá)[14],共同對抗光老化。
人體試驗(yàn)更是表明,在接受12周5%煙酰胺的局部治療后,中年女性的皮膚衰老(皺紋及色斑)問題得到肉眼可見的顯著改善[15]。

圖注:受試者在使用前與12周5%煙酰胺的局部治療后

遠(yuǎn)不止“皮毛功夫”,
NAM體內(nèi)代謝循環(huán)來咯
NAM延緩肌膚衰老確實(shí)好,但若是僅做些“表面功夫”,又好像不那么刺激。泡上一杯綠茶,派派繼續(xù)外網(wǎng)遨游,終于探尋到作為一名抗衰達(dá)人該講的東西。
2018年的一項(xiàng)研究發(fā)現(xiàn),NAM能通過改善高脂飲食小鼠體內(nèi)葡萄糖穩(wěn)態(tài)及肝臟脂肪情況,延長小鼠的健康壽命,還參與了NAD +相關(guān)代謝過程[16]。這一發(fā)現(xiàn),似乎在宣誓NAM可能并不僅僅有消炎、除皺的功效。
遍尋數(shù)據(jù)庫與眾多文獻(xiàn),派派終于找到NAM代謝“寶藏地圖”,想先放出與大家共享。請各位往下看:

圖注:NAM主要代謝途徑。圖源:[17]
看到這錯綜復(fù)雜的箭頭線框,你是否:

別擔(dān)憂看不懂,時光派獨(dú)家整理、劃重點(diǎn)型NAM主要代謝通路這就為各位奉上。

圖注:時光派獨(dú)家整理NAM主要生物學(xué)代謝通路
從上述代謝通路中,不難發(fā)現(xiàn)NAM與NAD +之間“千絲萬縷的糾葛”。在身體各個組織中,NAM作為前體可在NAMPT催化下生成NMN,進(jìn)而轉(zhuǎn)化為NAD +;而NAM同時也是NAD +在眾多消耗酶(如CD38、PARPs、SIRTs)作用下的產(chǎn)物。
除此外,NAM還能通過去氨基反應(yīng)生成NA(煙酸),借助NA的代謝通路,間接參與生物堿、檸檬酸、丙酮酸以及多種氨基酸代謝,甚至再次關(guān)聯(lián)NAD +途徑。
從代謝通路上看,NAM幾乎“打通了”NAD +關(guān)聯(lián)的“任督二脈”,那么,這是否意味著,NAM真是提升NAD +水平的物美價(jià)廉好方法?

作為前體之一,
NAM卻可能無法有效提升NAD +
雖然從代謝通路上分析,NAM確實(shí)是NAD +補(bǔ)救合成途徑中的前體,但若真用它去補(bǔ)充NAD +,結(jié)果可能是“賠了夫人還折兵”。
在NAD +補(bǔ)救合成途徑中,NAMPT是反應(yīng)的限速酶[18, 19],這意味著即使你一個勁補(bǔ)充NAM,最后也只有很少部分會參與到合成NAD +中。甚至,先前小鼠體內(nèi)研究發(fā)現(xiàn),補(bǔ)充NAM根本無法有效提升NAD +水平[16]。
毫不夸張講,NAM貢獻(xiàn)的這點(diǎn)量,與NAD +因衰老而下降的幅度相比,實(shí)在是杯水車薪,難解燃眉之急。

用得不多、還不斷生成,因此,NAM其實(shí)很容易過剩,而一旦其過量,就可能導(dǎo)致不少問題。
首先,從NAD +合成上講,多余NAM可能抑制NAMPT活性[16],進(jìn)一步限制了補(bǔ)救合成途徑;其次,在負(fù)反饋機(jī)制的調(diào)控下,過量NAM會反過來抑制包括長壽蛋白Sirtuins[20]在內(nèi)的多種NAD +消耗途徑。
最后,過剩的NAM作為甲基受體,還可能顯著影響細(xì)胞甲基代謝,干擾DNA和蛋白質(zhì)的正常甲基化[21],造成如胰島素抵抗、帕金森癥及肝臟毒性等不良影響[22, 23]。
最后,實(shí)錘NAM無效的證據(jù)是:我們的身體在日漸衰老中,壓根就不缺NAM,老年人體內(nèi)NAM的含量比年輕人還要高上不少[19]。
NAD +“日薄西山”,NAM縱然有心也無力,妄圖依靠攝入它來提升NAD +,怕是還沒延年益壽,就要先迎接副作用的狂風(fēng)暴雨,聽一句勸,別嘗試了。

一點(diǎn)討論:NAM究竟多少才算好?
“每一個硬幣都有兩面”,幾乎不可能存在某一絕對“好”或“壞”的事物,NAM其實(shí)也是這么一回事,在生物體內(nèi)含量不同,就可能造成完全不一樣的結(jié)果。
前文提到,過量NAM會抑制SIRT1,影響機(jī)體NAD +過程。但不少實(shí)驗(yàn)甚至是臨床研究也發(fā)現(xiàn),低劑量NAM正是通過抑制SIRT1與PARP1,調(diào)控細(xì)胞周期或代謝通路(如KRAS/AKT通路),以及關(guān)聯(lián)基因(如Myc癌基因)的表達(dá),進(jìn)而預(yù)防或輔助多種癌癥治療[24-26]。
此外,還存在低劑量NAM可能治療糖尿病、起到神經(jīng)保護(hù)作用[27],高劑量又會導(dǎo)致胰島素抵抗、帕金森癥的矛盾現(xiàn)象。一條大大的“U”形曲線仿佛已呈現(xiàn)在眼前。
“成也蕭何,敗也蕭何”,雖然可以肯定的是,從提升NAD +角度來說,NAM真的不是個好選擇,但它是否真在其他領(lǐng)域有用武之地,或者應(yīng)該怎么用、用多少,都值得再去思考。
—— TIMEPIE ——
不想錯過延壽前沿精彩內(nèi)容?
那就點(diǎn)進(jìn)時光派主頁關(guān)注吧!

參考文獻(xiàn)
[1] Wang, Y., Wang, F., Wang, L., Qiu, S., Yao, Y., Yan, C., Xiong, X., Chen, X., Ji, Q., Cao, J., Gao, G., Li, D., Zhang, L., Guo, Z., Wang, R., Wang, H., & Fan, G. (2021). NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell reports, 36(6), 109516. https://doi.org/10.1016/j.celrep.2021.109516
[2] https://www.mskcc.org/cancer-care/integrative-medicine/herbs/nicotinamide
[3] Sneader W (2005). Drug Discovery: A History. John Wiley & Sons. p. 231. ISBN 978-0-470-01552-0. Archived from the original on 30 December 2016.
[4] World Health Organization (2009). Stuart MC, Kouimtzi M, Hill SR (eds.). WHO Model Formulary 2008. World Health Organization. pp. 496, 500. hdl:10665/44053. ISBN 9789241547659.
[5] https://www.webmd.com/vitamins/ai/ingredientmono-1534/niacinamide
[6] Draelos, Z. D., Matsubara, A., & Smiles, K. (2006). The effect of 2% niacinamide on facial sebum production. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology, 8(2), 96–101. https://doi.org/10.1080/14764170600717704
[7] Kim, J., Ochoa, M. T., Krutzik, S. R., Takeuchi, O., Uematsu, S., Legaspi, A. J., Brightbill, H. D., Holland, D., Cunliffe, W. J., Akira, S., Sieling, P. A., Godowski, P. J., & Modlin, R. L. (2002). Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Journal of immunology (Baltimore, Md. : 1950), 169(3), 1535–1541. https://doi.org/10.4049/jimmunol.169.3.1535
[8] Ashkani Esfahani, S., Khoshneviszadeh, M., Namazi, M. R., Noorafshan, A., Geramizadeh, B., Nadimi, E., & Razavipour, S. T. (2015). Topical Nicotinamide Improves Tissue Regeneration in Excisional Full-Thickness Skin Wounds: A Stereological and Pathological Study. Trauma monthly, 20(4), e18193. https://doi.org/10.5812/traumamon.18193
[9] https://patentimages.storage.googleapis.com/85/09/7f/a544e8dd5c7562/US3937810.pdf
[10] Boissy, R.E., Minwalla, L., Bissett, D.L., Zhuang, J.C., and Chhoa, M., (2001). Niacinamide inhibits transfer of melanosomes from melanocytes to keratinocytes, 59th Annual Meeting American Academy of Dermatology, Washington.
[11] Hakozaki, T., Minwalla, L., Zhuang, J., Chhoa, M., Matsubara, A., Miyamoto, K., Greatens, A., Hillebrand, G. G., Bissett, D. L., & Boissy, R. E. (2002). The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. The British journal of dermatology, 147(1), 20–31. https://doi.org/10.1046/j.1365-2133.2002.04834.x
[12] Oblong, J.E., Bissett, D.L., Ritter, J.L., Kurtz, K.K., and Schnicker, M.S. (2001). Niacinamide stimulates collagen synthesis from human dermal fibroblasts and differentiation marker in normal human epidermal keratinocytes: Potential of niacinamide to normalize aged skin cells to correct homeostatic balance, 59th Annual Meeting American Academy of Dermatology, Washington.
[13] Tanno, O., Ota, Y., Kitamura, N., Katsube, T., & Inoue, S. (2000). Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. The British journal of dermatology, 143(3), 524–531. https://doi.org/10.1111/j.1365-2133.2000.03705.x
[14] Shen, S.C., Yoshii, T., Chen, Y.C., Tsai, T.H., Hu, C.H., and Lee, W.R. (2002). Niacinamide reduces DNA damage caused by reactive oxygen species, 60th Annual Meeting American Academy of Dermatology, New Orleans.
[15] Bissett, D.L., Oblong, J.E., Saud, A., and Levine, M. (2002). Topical niacinamide provides improvements in ageing human facial skin, 60th Annual Meeting American Academy of Dermatology, New Orleans.
[16] Mitchell, S. J., Bernier, M., Aon, M. A., Cortassa, S., Kim, E. Y., Fang, E. F., Palacios, H. H., Ali, A., Navas-Enamorado, I., Di Francesco, A., Kaiser, T. A., Waltz, T. B., Zhang, N., Ellis, J. L., Elliott, P. J., Frederick, D. W., Bohr, V. A., Schmidt, M. S., Brenner, C., Sinclair, D. A., … de Cabo, R. (2018). Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell metabolism, 27(3), 667–676.e4. https://doi.org/10.1016/j.cmet.2018.02.001
[17] https://www.genome.jp/dbget-bin/www_bget?pathway:map00760
[18] Song, S. B., Park, J. S., Chung, G. J., Lee, I. H., & Hwang, E. S. (2019). Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics : Official journal of the Metabolomic Society, 15(10), 137. https://doi.org/10.1007/s11306-019-1604-4
[19] Bogan, K. L., & Brenner, C. (2008). Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annual review of nutrition, 28, 115–130. https://doi.org/10.1146/annurev.nutr.28.061807.155443
[20] Hwang, E. S., & Song, S. B. (2017). Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cellular and molecular life sciences : CMLS, 74(18), 3347–3362. https://doi.org/10.1007/s00018-017-2527-8
[21] Attwood, J. T., Yung, R. L., & Richardson, B. C. (2002). DNA methylation and the regulation of gene transcription. Cellular and molecular life sciences : CMLS, 59(2), 241–257. https://doi.org/10.1007/s00018-002-8420-z
[22] Liu, M., Chu, J., Gu, Y., Shi, H., Zhang, R., Wang, L., Chen, J., Shen, L., Yu, P., Chen, X., Ju, W., & Wang, Z. (2017). Serum N1-Methylnicotinamide is Associated With Coronary Artery Disease in Chinese Patients. Journal of the American Heart Association, 6(2), e004328. https://doi.org/10.1161/JAHA.116.004328
[23] Hwang, E. S., & Song, S. B. (2020). Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules, 10(5), 687. https://doi.org/10.3390/biom10050687
[24] Tiwari, P., Sahay, S., Pandey, M., Qadri, S. S., & Gupta, K. P. (2016). Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs. Biochimie, 121, 112–122. https://doi.org/10.1016/j.biochi.2015.11.027
[25] Kim, S. K., Yun, S. J., Kim, J., Lee, O. J., Bae, S. C., & Kim, W. J. (2011). Identification of gene expression signature modulated by nicotinamide in a mouse bladder cancer model. PloS one, 6(10), e26131. https://doi.org/10.1371/journal.pone.0026131
[26] Kim, J. Y., Lee, H., Woo, J., Yue, W., Kim, K., Choi, S., Jang, J. J., Kim, Y., Park, I. A., Han, D., & Ryu, H. S. (2017). Reconstruction of pathway modification induced by nicotinamide using multi-omic network analyses in triple negative breast cancer. Scientific reports, 7(1), 3466. https://doi.org/10.1038/s41598-017-03322-7
[27] Knip, M., Douek, I. F., Moore, W. P., Gillmor, H. A., McLean, A. E., Bingley, P. J., Gale, E. A., & European Nicotinamide Diabetes Intervention Trial Group (2000). Safety of high-dose nicotinamide: a review. Diabetologia, 43(11), 1337–1345. https://doi.org/10.1007/s001250051536