最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

R語言代做編程輔導(dǎo)和解答M3S9/M4S9 Stochastic Simulation: Project 2

2022-12-13 16:49 作者:拓端tecdat  | 我要投稿

全文鏈接:http://tecdat.cn/?p=30829

  1. Consider the following density:

f(x) / ( 0 otherwise. x(11-x) exp h- 12 -2 + ln 1-xx2

(a) Devise and implement two efficient algorithms for simulating from f(x).
(b) Estimate the normalizing constant using Monte Carlo integration.
(c) Devise and implement a Metropolis-Hastings sampler for generating variates
from f(x). In particular:
i) You should tune the Metropolis-Hastings algorithm to have acceptance rate
about 20%.
ii) Examine how the rate at which the algorithm reaches equilibrium depends
on the starting value.
iii) Consider carefully the correlation structure of the sequence generated.
iv) Compare the results of the Metropolis-Hastings sampler with the method
implemented in (a).

  1. Consider the following bimodal \two-humps" density:

f(x; λ0) / exp -x2 1 + x2 2 + (x1 +2x2)2 - 2λ0x1x2 ; x 2 R2

for some parameter λ0, say λ0 = -4.

(a) Devise and implement a Metropolis-with-Gibbs sampler for generating variates from f(x; λ0).
(b) Devise and implement a Metropolis-Hastings sampler for generating variates from f(x; λ0).
(c) Compare the behavior of the Metropolis-with-Gibbs sampler and MetropolisHastings algorithm when λ0 = -4 and when λ0 = -8.

(a) ? h=function(x) { ? options(warn=-1) ? if(x>0 && x<1)v=exp(-((3+log(x/(1-x)))^2)/2)/(x-x^2) ? else v=0

normalfactor =function(n) ? {

ff=function(x){sqrt(f(x))} fff<-function(x){x*sqrt(f(x))} ? opt=function (n){#alpha,beta,theta are calculated using optimize function in R ??? ??? alpha = optimize(ff,c(0,1),maximum=T)$objective??? beta = 0? ??? theta = optimize(fff,c(0,1),maximum=T)$objective??? tp <- (nf)/(2 *alpha * (theta - beta)) ??? factor = 1/((nf)/(2 * alpha * (theta - beta)))

輸出前100000個(gè)分布的值 ?#envelop function envenv =function(x) ? { ??? if(x<=0)v=0??? else if(x<=0.01)v=330*x ??? else if(x<=0.03)v=33

黑色代表函數(shù)值,綠色代表envelop function的擬合值。

?

計(jì)算envelop function的累計(jì)密度函數(shù)

mv=optimize(f(x)/env(x),c(0,1),maximum=T)$objective? f2 = function(n) ? { ??? rand = vector("numeric",0)

B)

nfactor =function(n) ? { ??? u = runif(n,0,1) ??? theta=mean(f(u)) ? ? ? ? ? ? ? ?

x=f1(u) ??? theta=mean((f(x)/env(x)*a)) ??? cat("normalising factor?? ",theta,"\n") ??? f(x)*a/env(x)


R語言代做編程輔導(dǎo)和解答M3S9/M4S9 Stochastic Simulation: Project 2的評論 (共 條)

分享到微博請遵守國家法律
樟树市| 晋江市| 鄱阳县| 甘谷县| 临洮县| 阿坝县| 岳普湖县| 尼木县| 电白县| 平利县| 广南县| 驻马店市| 佛山市| 安图县| 韩城市| 正阳县| 专栏| 奉节县| 东兰县| 泰和县| 伽师县| 淮滨县| 和平区| 罗山县| 龙州县| 曲周县| 云浮市| 司法| 洞头县| 贵州省| 沛县| 封丘县| 桑日县| 娄烦县| 宜春市| 绥滨县| 康平县| 瑞金市| 新田县| 察雅县| 延边|