最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

通過定義證明下凸函數(shù)的積分不等式

2023-05-27 17:03 作者:~Sakuno醬  | 我要投稿

已知f(x)%5Ba%2Cb%5D上的下凸函數(shù), 即對(duì)任意的x_1%2Cx_2%20%5Cin%20%5Ba%2Cb%5D%20有?f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%5Cle%20%5Cfrac%7Bf(x_1)%2Bf(x_2)%7D%7B2%7D%20

證明1:

(b-a)f(%5Cfrac%7Ba%2Bb%7D%7B2%7D)%20%5Cle%20%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx

網(wǎng)上的證明通常是通過泰勒公式證明的 我這里嘗試通過積分的定義證明

首先用極限表示定積分

%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx%20%3D%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7Bn%7D%5Ccdot%20i)

在這篇文章中我證明了通過中值定義的下凸函數(shù)可以推廣到更一般的形式,這里直接試使用結(jié)論了?https://www.bilibili.com/read/cv23934919

把?%5Cfrac%7Bi%7D%7Bn%7D看成?t?使用不等式?f(a%2Bt(b-a))%20%5Cle%20f(a)%2Bt(f(b)-f(a))

%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7Bn%7D%5Ccdot%20i)%20%5Cle%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a)%2B%20%5Cfrac%7Bi%7D%7Bn%7D%20%5Ccdot%20(f(b)-f(a))

%5Cle%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%20f(a)%5Ccdot%20n%2B%20%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cfrac%7Bi%7D%7Bn%7D%20%5Ccdot%20(f(b)-f(a))

套用求和公式

%5Cle%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D(b-a)%20%5Ccdot%20f(a)%2B%20%5Cfrac%7Bb-a%7D%7Bn%5E2%7D%20%5Ccdot%20(%5Cfrac%7Bn(n%2B1)%7D%7B2%7D)%20%5Ccdot%20(f(b)-f(a))

%5Cle%20(b-a)%20%5Ccdot%20f(a)%2B%20(%5Cfrac%7Bb-a%7D%7B2%7D)%20%5Ccdot%20(f(b)-f(a))

%5Cle%20(b-a)%20%5Cfrac%7Bf(a)%2Bf(b)%7D%7B2%7D


另一個(gè)不等式也是同理

證明2:

%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7Bn%7D%5Ccdot%20i)

這里把n變成2n然后首尾相加湊不等式

%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7B2n%7D%5Ccdot%20i)%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7B2n%7D%5Ccdot%20i)%20%2B%20f(a%2B%5Cfrac%7Bb-a%7D%7B2n%7D(2n%2B1-i))

運(yùn)用f(%5Cfrac%7Ba%2Bb%7D%7B2%7D)%20%5Cle%20%5Cfrac%7Bf(a)%2Bf(b)%7D%7B2%7D%20 把?i 消掉

%20%5Cge%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%202f(a%2B%5Cfrac%7Bb-a%7D%7B4n%7D(2n%2B1))

%20%5Cge%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%202nf(2a%2B%5Cfrac%7Bb-a%7D%7B2n%7D(2n%2B1))

%20%5Cge%20(b-a)f(%5Cfrac%7Ba%2Bb%7D%7B2%7D)

通過定義證明下凸函數(shù)的積分不等式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
丹江口市| 陕西省| 高密市| 淅川县| 广丰县| 永吉县| 辽阳市| 墨脱县| 满洲里市| 红安县| 龙口市| 鄂州市| 岳西县| 临邑县| 建平县| 石狮市| 友谊县| 旬邑县| 沁水县| 德格县| 时尚| 中西区| 鲁甸县| 冕宁县| 绥江县| 钦州市| 永安市| 井研县| 永泰县| 长兴县| 宁夏| 博乐市| 措勤县| 衡南县| 衢州市| 兴城市| 抚州市| 外汇| 兴宁市| 宁河县| 九寨沟县|