最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

學(xué)不明白的數(shù)學(xué)分析(五十八)

2023-02-22 23:27 作者:不能吃的大魚(yú)  | 我要投稿

介紹完含參變量常義積分,我們就要進(jìn)一步討論含參變量反常積分。我們?cè)诮榻B反常積分的收斂判別法時(shí),曾經(jīng)提到過(guò)瑕積分通過(guò)一定的變換,可以轉(zhuǎn)化為無(wú)窮積分。因此,我們主要以含參變量的無(wú)窮積分為我們的研究對(duì)象,來(lái)對(duì)其進(jìn)行性質(zhì)的討論。

在上一篇專欄當(dāng)中,我有介紹過(guò),含參變量積分與函數(shù)項(xiàng)級(jí)數(shù)有著類似的地方;而在反常積分尤其是無(wú)窮積分部分,我們指出了無(wú)窮積分與數(shù)項(xiàng)級(jí)數(shù)之間的聯(lián)系。所以,我們不難想到,在這一部分,我們有很多的東西,與函數(shù)項(xiàng)級(jí)數(shù)部分有很多十分相近的內(nèi)容。


Chapter? Eighteen? 含參變量積分

18.2? 含參變量反常積分的一致收斂

我們?cè)谏弦黄獙谥赋?,在含參變量積分與函數(shù)項(xiàng)級(jí)數(shù)之間,級(jí)數(shù)中的n對(duì)應(yīng)于積分中的x,級(jí)數(shù)中的x對(duì)應(yīng)于積分中的u。也就是說(shuō),實(shí)際上,二者之間的關(guān)系十分緊密,對(duì)于其中一個(gè)概念適用的討論對(duì)于另外一個(gè)概念應(yīng)該也有類似的內(nèi)容。

我們知道,我們?cè)诤瘮?shù)項(xiàng)級(jí)數(shù)部分的討論,是從函數(shù)列開(kāi)始的,因?yàn)楹瘮?shù)項(xiàng)級(jí)數(shù)%5Csum_%7Bn%3D0%7D%5E%E2%88%9E%20u_n(x)%20的問(wèn)題本質(zhì)上是部分和函數(shù)列%5C%7BS_n(x)%5C%7D的問(wèn)題。因此,類似地,含參變量反常積分:

%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx

的斂散性問(wèn)題,本質(zhì)上就是變上限積分函數(shù):

F(A%2Cu)%3D%5Cint_a%5EA%20f(x%2Cu)%5Ctext%20dx

的斂散性問(wèn)題。于是我們也從含參變量函數(shù)入手,來(lái)逐步討論得到有關(guān)含參變量反常積分的性質(zhì)。

首先,我們能夠想到的,就是一致收斂。

回憶函數(shù)列一致收斂的定義:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20N%EF%BC%8C%5Cforall%20n%EF%BC%9EN%EF%BC%8Cx%5Cin%20I%EF%BC%8C%7Cf_n(x)-f(x)%7C%EF%BC%9C%5Cvarepsilon%20.

我們考慮到n與x,x與u之間的關(guān)系,就不難對(duì)其修改得到以下定義:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20%5Cdelta%20%EF%BC%9E0%EF%BC%8C%5Cforall%20x%5Cin%20%5Cmathring%20U(x_0%2C%5Cdelta%20)%EF%BC%8Cu%5Cin%20I%EF%BC%8C%7Cf(x%2Cu)-%5Cvarphi%20(u)%7C%EF%BC%9C%5Cvarepsilon%20.

此時(shí),我們稱含參變量函數(shù)f(x%2Cu)x%5Crightarrow%20x_0時(shí)關(guān)于u一致收斂到%5Cvarphi%20(u)。

考慮到我們所實(shí)際需要的極限過(guò)程,類似地有:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20%5Cdelta%20%EF%BC%9E0%EF%BC%8C%5Cforall%20x%EF%BC%9E%5Cdelta%20%EF%BC%8Cu%5Cin%20I%EF%BC%8C%7Cf(x%2Cu)-%5Cvarphi%20(u)%7C%EF%BC%9C%5Cvarepsilon%20.

此時(shí),我們稱含參變量函數(shù)f(x%2Cu)x%5Crightarrow%20%2B%E2%88%9E時(shí)關(guān)于u一致收斂到%5Cvarphi%20(u)。

對(duì)于這一定義,我們也有以下的等價(jià)定義(以x%5Crightarrow%20%2B%E2%88%9E為例):

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20%5Cdelta%20%EF%BC%9E0%EF%BC%8C%5Cforall%20x%EF%BC%9E%5Cdelta%20%EF%BC%8C%5Csup_%20%7Bu%20%5Cin%20I%7D%7Cf(x%2Cu)-%5Cvarphi%20(u)%7C%EF%BC%9C%5Cvarepsilon%20.

(等價(jià)定義1)

以及:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8CM%EF%BC%9E0%EF%BC%8C%5Cexists%20N%EF%BC%9E0%EF%BC%8C%5Cforall%20n%EF%BC%9EN%EF%BC%8Cu%5Cin%20I%EF%BC%8Cx_n%EF%BC%9EM%EF%BC%8C%7Cf(x_n%2Cu)-%5Cvarphi%20(u)%7C%EF%BC%9C%5Cvarepsilon%20.

(等價(jià)定義2)

在這里我們直接給出一個(gè)有關(guān)一致收斂的結(jié)論,證明留給大家:

設(shè)定義在:

D%3D%5Ba%2Cb%5D%5Ctimes%20I

上的函數(shù)f(x%2Cu)在任意固定x時(shí),關(guān)于u連續(xù),且在x%5Crightarrow%20x_0時(shí)關(guān)于u一致收斂到%5Cvarphi%20(u),則%5Cvarphi%20(u)連續(xù)。

(定理1)

介紹完一致收斂的概念,我們就要思考,這一概念能夠給我們研究問(wèn)題帶來(lái)哪些便利。與函數(shù)項(xiàng)級(jí)數(shù)平行的結(jié)論自不必說(shuō)。但是,有關(guān)于含參變量常義積分的內(nèi)容,我們可以更深入地研究一下。

我們?cè)谏弦还?jié)提到過(guò),若想含參變量積分的連續(xù),比較容易想到的首先就是保證在任意固定x時(shí),f(x%2Cu)關(guān)于u連續(xù)。但是,僅有這一點(diǎn)是不充分的,我們還需要一些條件來(lái)與之配合。

回憶一下我們的推導(dǎo)過(guò)程:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Cbigg%7C%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx-%5Cint_a%5Eb%20f(x%2Cu_0)%5Ctext%20dx%5Cbigg%7C%5Cle%20%5Cint_a%5Eb%20%7Cf(x%2Cu)-f(x%2Cu_0)%7C%5Ctext%20dx%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

則顯然,如果函數(shù)f(x%2Cu)u%5Crightarrow%20u_0時(shí)關(guān)于x一致收斂到f(x%2Cu_0),那么我們就能保證含參變量積分%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx關(guān)于u連續(xù),即:

%5Clim_%7Bu%5Cto%20u_0%7D%20%5Cbigg(%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%3D%20%5Cint%20_a%5Eb%20%5Cbigg(%5Clim_%7Bu%5Cto%20u_0%7D%20%20f(x%2Cu)%5Cbigg)%5Ctext%20dx

與函數(shù)項(xiàng)級(jí)數(shù)做對(duì)比,其實(shí)就是在說(shuō),逐點(diǎn)收斂無(wú)法保證含參變量積分的連續(xù)性,但是一致收斂可以。

(這里有一些細(xì)節(jié)沒(méi)有特別明確的給出,尤其要注意的就是含參變量函數(shù)可積性的保證與極限函數(shù)的可積性的得出。相信大家可以自行完成~)

不過(guò),當(dāng)有了一致收斂的概念以后,我們其實(shí)可以看到,即使f(x%2Cu)并不能保證在任意固定x時(shí),關(guān)于u連續(xù),也能夠得到類似的結(jié)果:

設(shè)定義在:

D%3D%5Ba%2Cb%5D%5Ctimes%20I

上的函數(shù)f(x%2Cu)在任意固定u時(shí)關(guān)于x可積,且在u%5Crightarrow%20u_0時(shí)關(guān)于x一致收斂到g(x),則g(x)可積,并有:

%5Clim_%7Bu%5Cto%20u_0%7D%20%5Cbigg(%5Cint_a%5Eb%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%3D%20%5Cint%20_a%5Eb%20%5Cbigg(%5Clim_%7Bu%5Cto%20u_0%7D%20%20f(x%2Cu)%5Cbigg)%5Ctext%20dx%3D%5Cint_a%5Eb%20g(x)%5Ctext%20dx

采用關(guān)于u%5Crightarrow%20u_0時(shí)的等價(jià)定義2就可以將其轉(zhuǎn)化為函數(shù)列的問(wèn)題,從而能夠很輕松地得到結(jié)果。

在有了一致收斂的概念以后,對(duì)于函數(shù)變上限積分函數(shù)的一致收斂也就好理解了。

我們直接給出一些與函數(shù)項(xiàng)級(jí)數(shù)平行的結(jié)論,至于證明,有興趣的小伙伴可以嘗試一下,并不難證明:

(1)當(dāng)A%5Crightarrow%20%2B%E2%88%9E時(shí),反常積分%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx一致收斂等價(jià)于:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20A_0%EF%BC%9E0%EF%BC%8C%5Cforall%20A%EF%BC%9EA_0%20%EF%BC%8Cu%5Cin%20I%EF%BC%8C%5Cbigg%7C%5Cint%20_A%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx%20%5Cbigg%20%7C%EF%BC%9C%5Cvarepsilon%20.

以及:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20A_0%EF%BC%9E0%EF%BC%8C%5Cforall%20A%EF%BC%9EA_0%20%EF%BC%8C%5Csup_%7Bu%5Cin%20I%7D%5Cbigg%7C%5Cint%20_A%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx%20%5Cbigg%20%7C%EF%BC%9C%5Cvarepsilon%20.

(2)Cauchy收斂原理:

當(dāng)A%5Crightarrow%20%2B%E2%88%9E時(shí),反常積分%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx一致收斂等價(jià)于:

%5Cforall%20%5Cvarepsilon%20%EF%BC%9E0%EF%BC%8C%5Cexists%20A_0%EF%BC%9E0%EF%BC%8C%5Cforall%20A_1%2CA_2%EF%BC%9EA_0%20%EF%BC%8Cu%5Cin%20I%EF%BC%8C%5Cbigg%7C%5Cint%20_%7BA_1%7D%5E%7BA_2%7D%20f(x%2Cu)%5Ctext%20dx%20%5Cbigg%20%7C%EF%BC%9C%5Cvarepsilon%20.

(3)Weierstrass控制判別法:

設(shè)f(x%2Cu)%5Ba%2C%2B%E2%88%9E)上關(guān)于x連續(xù),如果存在%5Ba%2C%2B%E2%88%9E)上的非負(fù)連續(xù)函數(shù)h(x),使得:

%5Cint%20_a%5E%7B%2B%E2%88%9E%7D%20h(x)%5Ctext%20dx

收斂,并且:

%7Cf(x%2Cu)%7C%5Cle%20h(x)%5Cquad(x%5Cin%20%5Ba%2C%2B%E2%88%9E))

則反常積分%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx一致收斂;

(4)Dirichlet判別法:設(shè)f%2Cg滿足:

①當(dāng)A%5Crightarrow%20%2B%E2%88%9E時(shí),%5Cint_a%5EA%20f(x%2Cu)%5Ctext%20dx關(guān)于u一致有界;

②對(duì)任意固定的u,g(x%2Cu)關(guān)于x單調(diào),且當(dāng)x%5Crightarrow%20%2B%E2%88%9E時(shí)關(guān)于x一致收斂于0;

則反常積分%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)g(x%2Cu)%5Ctext%20dx一致收斂;

(5)Abel判別法:

%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx關(guān)于u一致收斂;

②對(duì)任意固定的u,g(x%2Cu)關(guān)于x單調(diào),且一致有界;

則反常積分%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)g(x%2Cu)%5Ctext%20dx一致收斂。


Chapter? Eighteen? 含參變量積分

18.3? 含參變量反常積分的性質(zhì)

從上面我們的討論,我們不難理解到,含參變量反常積分實(shí)際上可以寫(xiě)作:

%5Cvarphi%20(u)%3D%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx

本質(zhì)上是一個(gè)關(guān)于u的函數(shù)。

還是一樣,考慮到含參變量反常積分與函數(shù)項(xiàng)級(jí)數(shù)之間的緊密聯(lián)系,其性質(zhì)方面也應(yīng)該由于函數(shù)項(xiàng)級(jí)數(shù)類似的討論。在此我們不再贅述,只是將定理敘述一遍,證明思路與函數(shù)項(xiàng)級(jí)數(shù)部分高度一致,大家自然很容易理解這些內(nèi)容,也可以嘗試自行證明:

(1)連續(xù)性:

如果函數(shù)f(x%2Cu)在:

D%3D%5Ba%2C%2B%E2%88%9E)%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),且%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx關(guān)于u一致收斂,則%5Cvarphi%20(u)連續(xù);

(2)Dini定理:

如果函數(shù)f(x%2Cu)在:

D%3D%5Ba%2C%2B%E2%88%9E)%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上非負(fù)連續(xù),且%5Cvarphi%20(u)在某一有限閉區(qū)間上連續(xù),則%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx關(guān)于u一致收斂;

(3)可積性:

如果函數(shù)f(x%2Cu)在:

D%3D%5Ba%2C%2B%E2%88%9E)%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),且%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx關(guān)于u一致收斂,則%5Cvarphi%20(u)在可積,并有:

%5Cint_%5Calpha%20%5E%5Cbeta%5Cvarphi%20(u)%5Ctext%20du%3D%5Cint_%5Calpha%20%5E%5Cbeta%20%5Cbigg(%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%5Ctext%20du%3D%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%5Cbigg(%5Cint_%5Calpha%5E%5Cbeta%20f(x%2Cu)%5Ctext%20du%5Cbigg)%5Ctext%20dx

(4)可微性:

如果函數(shù)f%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%20都在:

D%3D%5Ba%2C%2B%E2%88%9E)%5Ctimes%20%5B%5Calpha%2C%5Cbeta%5D

上連續(xù),且%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu)%5Ctext%20dx關(guān)于u一致收斂,則%5Cvarphi%20(u)在可微,并有:

%5Cfrac%7B%5Ctext%20d%5Cvarphi%20%7D%7B%5Ctext%20du%7D%20%3D%5Cfrac%7B%5Ctext%20d(%5Cint_a%5Ebf(x%2Cu)%5Ctext%20dx)%7D%7B%5Ctext%20du%7D%3D%5Cint_a%5Eb%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D(x%2Cu)%5Ctext%20dx

這些內(nèi)容都是由函數(shù)項(xiàng)級(jí)數(shù)的對(duì)應(yīng)的結(jié)論非常自然地平行推及得到的,但是這些內(nèi)容還可以進(jìn)行推廣。

首先是連續(xù)性部分。實(shí)際上,所謂連續(xù)性,不過(guò)是函數(shù)的極限與函數(shù)值之間有一定的關(guān)系。當(dāng)我們放寬條件,只考慮極限存在的情況,那么就會(huì)有不一樣但是類似的結(jié)果:

設(shè)定義在:

D%3D%5Ba%2C%2B%E2%88%9E)%5Ctimes%20I

上的函數(shù)f(x%2Cu)在任意固定u時(shí)關(guān)于x可積,且對(duì)于任意的A>a,在u%5Crightarrow%20u_0時(shí)關(guān)于x一致收斂到g(x),以及%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx關(guān)于u一致收斂,則有:

%5Clim_%7Bu%5Cto%20u_0%5C%5C%20u%5Cin%20I%7D%20%5Cbigg(%5Cint_a%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%3D%20%5Cint%20_a%5E%7B%2B%E2%88%9E%7D%20%5Cbigg(%5Clim_%7Bu%5Cto%20u_0%5C%5Cu%20%5Cin%20I%7D%20%20f(x%2Cu)%5Cbigg)%5Ctext%20dx%3D%5Cint_a%5E%7B%2B%E2%88%9E%7D%20g(x)%5Ctext%20dx

(定理2)

其次是可積性部分。如果我們記:

F(%5Cbeta%2Cx)%3D%5Cint_%5Calpha%5E%5Cbeta%20f(x%2Cu)%5Ctext%20du

那么結(jié)論(2)又可以表示成:

%5Cint_%5Calpha%20%5E%5Cbeta%20%5Cvarphi%20(u)%5Ctext%20du%3D%5Cint_a%5E%7B%2B%E2%88%9E%7D%20F(%5Cbeta%2Cx)%5Ctext%20dx

如果:

%5Cint_%5Calpha%20%5E%7B%2B%E2%88%9E%7D%5Cvarphi%20(u)%5Ctext%20du收斂

%5Cint_%5Calpha%5E%7B%2B%E2%88%9E%7Df(x%2Cu)%5Ctext%20du%EF%BC%8C%5Cint_a%5E%7B%2B%E2%88%9E%7D%20F(%5Cbeta%2Cx)%5Ctext%20dx一致收斂;

則:

%5Cbegin%20%7Bequation%7D%0A%5Cbegin%20%7Baligned%7D%0A%5Clim_%7B%5Cbeta%20%5Cto%2B%E2%88%9E%7D%20%5Cint_%5Calpha%20%5E%5Cbeta%20%5Cvarphi%20(u)%5Ctext%20du%26%3D%5Clim_%7B%5Cbeta%20%5Cto%2B%E2%88%9E%7D%20%5Cbigg(%5Cint_a%5E%7B%2B%E2%88%9E%7D%20F(%5Cbeta%2Cx)%5Ctext%20dx%5Cbigg)%5C%5C%0A%26%3D%5Cint_a%20%5E%7B%2B%E2%88%9E%7D%5Cbigg(%5Clim_%7B%5Cbeta%20%5Cto%2B%E2%88%9E%7D%20F(%5Cbeta%2Cx)%5Cbigg)%5Ctext%20dx%5C%5C%0A%26%3D%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%5Cbigg(%5Cint_%5Calpha%5E%7B%2B%E2%88%9E%7D%20f(x%2Cu)%5Ctext%20du%5Cbigg)%5Ctext%20dx%0A%5Cend%20%7Baligned%7D%0A%5Cend%20%7Bequation%7D

也即:

%5Cint_%5Calpha%20%5E%7B%2B%E2%88%9E%7D%5Cbigg(%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%20f(x%2Cu)%5Ctext%20dx%5Cbigg)%5Ctext%20du%3D%5Cint_a%5E%7B%2B%E2%88%9E%7D%20%5Cbigg(%5Cint_%5Calpha%5E%7B%2B%E2%88%9E%7Df(x%2Cu)%5Ctext%20du%5Cbigg)%5Ctext%20dx

這就將可積性的結(jié)論做了推廣,使之在雙無(wú)窮區(qū)間上也成立。


思考:

  1. 證明等價(jià)定義1;

  2. 證明等價(jià)定義2;

  3. 證明定理1;

  4. 證明定理2;

  5. 判斷下列反常積分是否一致收斂:

    (1)

    %5Cint_0%5E%7B%2B%E2%88%9E%7D%20e%5E%7B-ux%7D%5Csin%20x%5Ctext%20dx%5Cquad(0%EF%BC%9Cu_0%5Cle%20u%EF%BC%9C%2B%E2%88%9E)

    (2)

    %5Cint_0%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7B%5Ctext%20dx%7D%7B1%2B(x%2Bu)%5E2%7D%20%5Cquad(0%5Cle%20u%EF%BC%9C%2B%E2%88%9E)

    (3)

    %5Cint_%7B-%E2%88%9E%7D%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7Bx%5E2%5Ccos%20ux%7D%7B1%2Bx%5E4%7D%20%5Ctext%20dx%20%5Cquad(-%E2%88%9E%EF%BC%9Cu%EF%BC%9C%2B%E2%88%9E)

    (4)

    %5Cint_1%5E%7B%2B%E2%88%9E%7D%20e%5E%7B-ux%7D%20%5Cfrac%7B%5Ccos%20x%7D%7B%5Csqrt%7Bx%7D%20%7D%20%5Ctext%20dx%20%5Cquad(0%5Cle%20u%EF%BC%9C%2B%E2%88%9E)

    (5)

    %5Cint_0%5E%7B%2B%E2%88%9E%7D%20%5Csqrt%7Bu%7D%20e%5E%7B-ux%5E2%7D%5Ctext%20dx%20%5Cquad(0%5Cle%20u%EF%BC%9C%2B%E2%88%9E)

  6. 證明:積分:

    %5Cint_0%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7B%5Csin%20ux%7D%7Bx%7D%20%5Ctext%20dx

    在任何不包含u=0的有限閉區(qū)間上一致收斂,在包含u=0的有限閉區(qū)間上不一致收斂;

  7. 研究下列函數(shù)在指定區(qū)間上的連續(xù)性:

    (1)

    f(x)%3D%5Cint_0%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7Bt%7D%7B2%2Bt%5Ex%7D%20%5Ctext%20dt%20%5Cquad(x%5Cin(2%2C%2B%E2%88%9E))

    (2)

    f(x)%3D%5Cint_1%5E%7B%2B%E2%88%9E%7D%20%5Cfrac%7B%5Csin%20t%7D%7Bt%5Ex%7D%20%5Ctext%20d%20t%20%5Cquad(x%5Cin(0%2C%2B%E2%88%9E))

  8. 計(jì)算積分:

    %5Cint_0%5E1%20x%5E%7B%5Calpha-1%7D(%5Cln%20x)%5Em%5Ctext%20dx


最後の最後に、ありがとうございました!

學(xué)不明白的數(shù)學(xué)分析(五十八)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
凉城县| 巴南区| 绍兴县| 西畴县| 正定县| 三台县| 普定县| 乌鲁木齐县| 屏东县| 丰原市| 邵武市| 杭锦旗| 廉江市| 永和县| 盘锦市| 城步| 和平县| 泰安市| 上高县| 江山市| 通山县| 景泰县| 武强县| 青铜峡市| 商南县| 蒙阴县| 保靖县| 清丰县| 蒲江县| 老河口市| 东海县| 太和县| 颍上县| 嘉鱼县| 鱼台县| 阿合奇县| 灵璧县| 元江| 伊吾县| 大冶市| 土默特右旗|