最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

2023浙江大學(xué)強(qiáng)基數(shù)學(xué)逐題解析(7)

2023-07-04 12:58 作者:CHN_ZCY  | 我要投稿

封面:冬の白ボブの魔法使い。

作畫:ノーコピーライトガール

https://www.pixiv.net/artworks/95091296


18. 已知C%2CL%5Cin%5Cmathbb%7BR%7DL%20%5Cneq%200,有

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%7B%5Cfrac%7Bn%5EC%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%5Csin%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%7D%7B%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%5Ccos%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%7D%7D%3DL

L%3D___________.

答案??%5Cfrac%7B2%7D%7B%5Cpi%7D

解析??

設(shè)

%5Cbegin%7Baligned%7D%0Aa_n%26%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%5Csin%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%20%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5Cright)%5C%5C%0Ab_n%26%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%5Ccos%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5Cright)%0A%5Cend%7Baligned%7D

則對任意n%5Cin%5Cmathbb%7BN%7D%5E*,

%5Cbegin%7Baligned%7D%0Aa_n%26%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%5Csin%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%5C%5C%26%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%20%5Cmathrm%7Bd%7D%20%5Cleft(-%5Ccos%20x%5Cright)%20%7D%5C%5C%26%3D-x%5En%5Ccos%20x%5Cbigg%7C_0%5E%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7B%5Cleft(-%5Ccos%20x%20%5Cright)%5Cmathrm%7Bd%7D%20x%5En%20%7D%5C%5C%26%3Dn%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5E%7Bn-1%7D%5Ccos%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%5C%5C%26%3Dnb_%7Bn-1%7D%5C%5C%0Ab_n%26%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%5Ccos%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%5C%5C%26%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5En%20%5Cmathrm%7Bd%7D%20%5Csin%20x%20%7D%5C%5C%26%3Dx%5En%5Csin%20x%5Cbigg%7C_0%5E%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7B%5Csin%20x%20%5Cmathrm%7Bd%7D%20x%5En%20%7D%5C%5C%26%3D%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5En-n%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%7Bx%5E%7Bn-1%7D%5Csin%20x%20%5Cmathrm%7Bd%7D%20x%20%7D%5C%5C%26%3D%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5En-na_%7Bn-1%7D%0A%5Cend%7Baligned%7D

則對任意n%5Cgeq%202n%5Cin%5Cmathbb%7BN%7D,

%5Cbegin%7Baligned%7D%0Aa_n%26%3Dnb_%7Bn-1%7D%3Dn%5Ccdot%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5E%7Bn-1%7D-n%5Cleft(n-1%5Cright)a_%7Bn-2%7D%5C%5C%0Ab_n%26%3D%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5En-na_%7Bn-1%7D%3D%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5En-n%5Cleft(n-1%5Cright)b_%7Bn-2%7D%0A%5Cend%7Baligned%7D

當(dāng)n%20%5Cto%20%5Cinfty時,不斷迭代得

%5Cbegin%7Baligned%7D%0Aa_n%26%3Dn%5Ccdot%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5E%7Bn-1%7D-n%5Cleft(n-1%5Cright)%5Cleft(n-2%5Cright)%5Ccdot%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5E%7Bn-3%7D%2B%5Ccdots%5C%5C%26%3D%5Csum_%7Bi%3D0%7D%5E%5Cinfty%7B%5Cfrac%7B%5Cleft(-1%5Cright)%5E%7Bi%7D%5Ccdot%20n!%7D%7B%5Cleft(n-2i-1%5Cright)!%7D%5Ccdot%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5E%7Bn-2i-1%7D%7D%5C%5C%0Ab_n%26%3D%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5En-n%5Cleft(n-1%5Cright)%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5E%7Bn-2%7D%2B%5Ccdots%5C%5C%26%3D%5Csum_%7Bi%3D0%7D%5E%5Cinfty%20%7B%5Cfrac%7B%5Cleft(-1%5Cright)%5E%7Bi%7D%5Ccdot%20n!%7D%7B%5Cleft(n-2i%5Cright)!%7D%5Ccdot%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright)%5E%7Bn-2i%7D%7D%0A%5Cend%7Baligned%7D

L%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%20%20n%5E%7BC%2B1%7D%5Ccdot%5Cfrac%7Bn%5E%7B-1%7Da_n%7D%7Bb_n%7D%3D%5Cfrac%7B2%7D%7B%5Cpi%7D%5Ccdot%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%20n%5E%7BC%2B1%7D

C%3C-1,則

L%3D%5Cfrac%7B2%7D%7B%5Cpi%7D%5Ccdot%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%20n%5E%7BC%2B1%7D%3D0

L%20%5Cneq%200矛盾,不符合題意.

C%3E-1,則

L%3D%5Cfrac%7B2%7D%7B%5Cpi%7D%5Ccdot%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%20n%5E%7BC%2B1%7D%3D%2B%5Cinfty

L%5Cin%5Cmathbb%7BR%7D矛盾,不符合題意.

C%3D-1,則

L%3D%5Cfrac%7B2%7D%7B%5Cpi%7D%5Ccdot%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%20n%5E%7BC%2B1%7D%3D%5Cfrac%7B2%7D%7B%5Cpi%7D

符合題意.

綜上,C%3D-1%2CL%3D%5Cfrac%7B2%7D%7B%5Cpi%7D.

所以L%3D%5Cfrac%7B2%7D%7B%5Cpi%7D.

19. 已知n%20%5Cin%20%5Cmathbb%7BN%7D%5E*,若存在正整數(shù)a_1%2Ca_2%2C%5Ccdots%2Ca_n%2Cb_1%2Cb_2%2C%5Ccdots%2Cb_n,滿足

%5Csum_%7Bi%3D1%7D%5En%20a_i%5E2%5Ccdot%5Csum_%7Bi%3D1%7D%5En%20b_i%5E2-%5Cleft(%5Csum_%7Bi%3D1%7D%5En%20a_i%20b_i%5Cright)%5E2%3Dn

則符合條件的n的個數(shù)為___________.

答案? 2

解析??

n%3D1,則

%5Csum_%7Bi%3D1%7D%5En%20a_i%5E2%5Ccdot%5Csum_%7Bi%3D1%7D%5En%20b_i%5E2-%5Cleft(%5Csum_%7Bi%3D1%7D%5En%20a_i%20b_i%5Cright)%5E2%3D0%20%5Cneq%201

所以n%3D1不符合題意.

n%5Cgeq2,由%5Ctext%7BLagrange%7D恒等式

n%3D%5Csum_%7Bi%3D1%7D%5En%20a_i%5E2%5Ccdot%5Csum_%7Bi%3D1%7D%5En%20b_i%5E2-%5Cleft(%5Csum_%7Bi%3D1%7D%5En%20a_i%20b_i%5Cright)%5E2%3D%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7B%5Cleft(a_ib_j-a_jb_i%5Cright)%5E2%7D%20

n%3D2,則

%5Cleft(a_1b_2-a_2b_1%5Cright)%5E2%3D2

%5Cleft%7Ca_1b_2-a_2b_1%5Cright%7C%3D%5Csqrt%7B2%7D

這是不可能成立的,所以n%3D2不符合題意.

n%5Cgeq%205,設(shè)%5Cfrac%7Bb_i%7D%7Ba_i%7D%5Cleft(1%5Cleq%20i%20%5Cleq%20n%5Cright)的不同的值共有k%5Cleft(2%5Cleq%20k%20%5Cleq%20n%5Cright)個,每個值對應(yīng)的i的個數(shù)分別為x_1%2Cx_2%2C%5Ccdots%2Cx_k,且

x_j%20%5Cleq%20x_%7Bj%2B1%7D%5Cleft(1%5Cleq%20j%20%5Cleq%20k-1%5Cright)

%5Csum_%7Bj%3D1%7D%5Ek%20x_j%3Dn

1%5Cleq%20x_j%20%5Cleq%20n-k%2B1%E4%B8%94x_j%5Cin%20%5Cmathbb%7BN%7D%5E*%5Cleft(1%5Cleq%20j%5Cleq%20k%5Cright).

%5Csum_%7Bi%3D1%7D%5Ek%20%5Cleft(x_i-1%5Cright)%5Cleft(x_i-n%2Bk-1%5Cright)%5Cleq0

%5Csum_%7Bi%3D1%7D%5Ek%20x_i%5E2%3D%5Csum_%7Bi%3D1%7D%5Ek%20%5Cleft(x_i-1%5Cright)%5Cleft(x_i-n%2Bk-1%5Cright)%2Bn%5Cleft(n-k%2B2%5Cright)-k%5Cleft(n-k%2B1%5Cright)%5Cleq%20k%5E2-%5Cleft(2n%2B1%5Cright)k%2Bn%5E2%2B2n

于是

%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7B%5Cleft(a_ib_j-a_jb_i%5Cright)%5E2%7D%20%3D%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7Ba_i%5E2a_j%5E2%5Cleft(%5Cfrac%7Bb_j%7D%7Ba_j%7D-%5Cfrac%7Bb_i%7D%7Ba_i%7D%5Cright)%5E2%7D%5Cgeq%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5Ek%20x_i%5Cleft(n-x_i%5Cright)%7D%7B2%7D%3D%5Cfrac%7Bn%5E2-%5Csum_%7Bi%3D1%7D%5Ek%20x_i%5E2%20%7D%7B2%7D%5Cgeq%5Cfrac%7B-k%5E2%2B%5Cleft(2n%2B1%5Cright)k-2n%7D%7B2%7D

x_1%5Cleq%5Csum_%7Bj%3D2%7D%5Ek%20x_j%3Dn-x_1

x_1%5Cleq%5Cfrac%7Bn%7D%7B2%7D%3C%20n-2.

x_1%20%5Cgeq%202,則

%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7B%5Cleft(a_ib_j-a_jb_i%5Cright)%5E2%7D%20%3D%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7Ba_i%5E2a_j%5E2%5Cleft(%5Cfrac%7Bb_j%7D%7Ba_j%7D-%5Cfrac%7Bb_i%7D%7Ba_i%7D%5Cright)%5E2%7D%5Cgeq%20%20x_1%5Cleft(n-x_1%5Cright)%5Cgeq%202n-4%20%3E%20n

矛盾,所以x_1%20%3C%202,得x_1%20%3D1.

k%3D2,則%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7B%5Cleft(a_ib_j-a_jb_i%5Cright)%5E2%7D的組成為

%5Cleft(%5Cfrac%7B1%7D%7B2%7Dn%5E2-%5Cfrac%7B3%7D%7B2%7Dn%2B1%5Cright)個0,%5Cleft(n-2%5Cright)個1,1個2

但2不是完全平方數(shù),因此該情況是不可能的,不符合題意.

k%20%5Cgeq%203,則

%5Csum_%7B1%5Cleq%20i%3Cj%5Cleq%20n%7D%7B%5Cleft(a_ib_j-a_jb_i%5Cright)%5E2%7D%20%5Cgeq%5Cfrac%7B-k%5E2%2B%5Cleft(2n%2B1%5Cright)k-2n%7D%7B2%7D%20%5Cgeq%202n-3%20%3En

矛盾,不符合題意.

所以n%5Cgeq%205不符合題意.

n%3D3,取

%5Cbegin%7Baligned%7D%0A%5Cleft(a_1%2Ca_2%2Ca_3%5Cright)%26%3D%5Cleft(1%2C2%2C1%5Cright)%5C%5C%0A%5Cleft(b_1%2Cb_2%2Cb_3%5Cright)%26%3D%5Cleft(3%2C5%2C2%5Cright)%0A%5Cend%7Baligned%7D

符合題意.

n%3D4,取

%5Cbegin%7Baligned%7D%0A%5Cleft(a_1%2Ca_2%2Ca_3%2Ca_4%5Cright)%26%3D%5Cleft(1%2C2%2C1%2C2%5Cright)%5C%5C%0A%5Cleft(b_1%2Cb_2%2Cb_3%2Cb_4%5Cright)%26%3D%5Cleft(2%2C3%2C2%2C3%5Cright)%0A%5Cend%7Baligned%7D

符合題意.

綜上,符合條件的所有的n為3, 4.

所以符合條件的n的個數(shù)為2.

20. 已知%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B%5Cln(1%2B%5Csin%5E2x)-6(%5Csqrt%5B3%5D%7B2-%5Ccos%20x%7D-1)%7D%7Bx%5E4%7D%7D%5Cright%7C%3D%5Cfrac%7Bq%7D%7Bp%7D,pq是互素的正整數(shù),則p%2Bq%3D___________.

答案? 19

解析

%5Cbegin%7Baligned%7D%0A%26%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B%5Cln%5Cleft(1%2B%5Csin%5E2x%5Cright)-6%5Cleft(%5Csqrt%5B3%5D%7B2-%5Ccos%20x%7D-1%5Cright)%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B%5Csin%5E2%20x-%5Cfrac%7B1%7D%7B2%7D%5Csin%5E4%20x%2B%5Comicron%5Cleft(%5Csin%5E4%20x%5Cright)-6%5Cleft(%5Csqrt%5B3%5D%7B1%2B2%5Csin%5E2%20%5Cfrac%7Bx%7D%7B2%7D%7D-1%5Cright)%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B%5Cleft%5Bx-%5Cfrac%7B1%7D%7B6%7Dx%5E3%2B%5Comicron%5Cleft(x%5E4%5Cright)%5Cright%5D%5E2-%5Cfrac%7B1%7D%7B2%7Dx%5E4%20%2B%5Comicron%5Cleft(x%5E4%5Cright)-6%5Cleft%5B1%2B%5Cfrac%7B2%7D%7B3%7D%5Csin%5E2%20%5Cfrac%7Bx%7D%7B2%7D-%5Cfrac%7B4%7D%7B9%7D%5Csin%5E4%5Cfrac%7Bx%7D%7B2%7D%2B%5Comicron%5Cleft(%5Csin%5E4%5Cfrac%7Bx%7D%7B2%7D%5Cright)-1%5Cright%5D%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B%5Cleft%5Bx-%5Cfrac%7B1%7D%7B6%7Dx%5E3%2B%5Comicron%5Cleft(x%5E4%5Cright)%5Cright%5D%5E2-%5Cfrac%7B1%7D%7B2%7Dx%5E4%20%2B%5Comicron%5Cleft(x%5E4%5Cright)-6%5Cleft%5B%5Cfrac%7B2%7D%7B3%7D%5Csin%5E2%20%5Cfrac%7Bx%7D%7B2%7D-%5Cfrac%7B4%7D%7B9%7D%5Csin%5E4%5Cfrac%7Bx%7D%7B2%7D%2B%5Comicron%5Cleft(%5Csin%5E4%5Cfrac%7Bx%7D%7B2%7D%5Cright)%5Cright%5D%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7Bx%5E2-%5Cfrac%7B1%7D%7B3%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)-%5Cfrac%7B1%7D%7B2%7Dx%5E4%20%2B%5Comicron%5Cleft(x%5E4%5Cright)-6%5Cleft%5B%5Cfrac%7B2%7D%7B3%7D%5Cleft%5B%5Cfrac%7B1%7D%7B2%7Dx-%5Cfrac%7B1%7D%7B48%7Dx%5E3%2B%5Comicron%5Cleft(%5Cfrac%7B1%7D%7B16%7Dx%5E4%5Cright)%5Cright%5D%5E2-%5Cfrac%7B1%7D%7B36%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)%5Cright%5D%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7Bx%5E2-%5Cfrac%7B5%7D%7B6%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)-6%5Cleft%5B%5Cfrac%7B1%7D%7B6%7Dx%5E2-%5Cfrac%7B1%7D%7B72%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)-%5Cfrac%7B1%7D%7B36%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)%5Cright%5D%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7Bx%5E2-%5Cfrac%7B5%7D%7B6%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)-6%5Cleft%5B%5Cfrac%7B1%7D%7B6%7Dx%5E2-%5Cfrac%7B1%7D%7B24%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)%5Cright%5D%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7Bx%5E2-%5Cfrac%7B5%7D%7B6%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)-x%5E2%2B%5Cfrac%7B1%7D%7B4%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B-%5Cfrac%7B7%7D%7B12%7Dx%5E4%2B%5Comicron%5Cleft(x%5E4%5Cright)%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C-%5Cfrac%7B7%7D%7B12%7D%2B%5Clim_%7Bx%20%5Crightarrow%200%7D%7B%5Cfrac%7B%5Comicron%5Cleft(x%5E4%5Cright)%7D%7Bx%5E4%7D%7D%5Cright%7C%5C%5C%0A%26%3D%5Cleft%7C-%5Cfrac%7B7%7D%7B12%7D%5Cright%7C%5C%5C%0A%26%3D%5Cfrac%7B7%7D%7B12%7D%0A%5Cend%7Baligned%7D

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=p" alt="p">和q是互素的正整數(shù),所以p%3D12%2Cq%3D7.

因此p%2Bq%3D19.

21. 已知多項(xiàng)式f_n%5Cleft(x%5Cright)%2Cn%5Cgeq0,滿足f_0%5Cleft(x%5Cright)%3D1,當(dāng)n%20%5Cgeq%201時滿足f_n%5Cleft(0%5Cright)%3D0;并且當(dāng)n%20%5Cgeq%200時有

%5Cfrac%7B%5Cmathrm%7Bd%7Df_%7Bn%2B1%7D%5Cleft(x%5Cright)%7D%7B%5Cmathrm%7Bd%7Dx%7D%3D%5Cleft(n%2B1%5Cright)f_n%5Cleft(x%5Cright)

請給出f_%7B100%7D%5Cleft(2023%5Cright)在10進(jìn)制下的最后2位數(shù).

答案? 01.

解析

首先用數(shù)學(xué)歸納法證明f_n%5Cleft(x%5Cright)%3Dx%5En%5Cleft(x%5Cin%5Cmathbb%7BN%7D%5E*%5Cright).

%5Cfrac%7B%5Cmathrm%7Bd%7Df_%7B1%7D%5Cleft(x%5Cright)%7D%7B%5Cmathrm%7Bd%7Dx%7D%3D1%5Ccdot%20f_0%5Cleft(x%5Cright)%3D1

f_1%5Cleft(x%5Cright)%3Dx%2BC.

f_1%5Cleft(0%5Cright)%3D0%3DC,所以f_1%5Cleft(x%5Cright)%3Dx.

所以原命題對n%3D1成立.

假設(shè)原命題對n%3Dk%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)成立,即

f_k%5Cleft(x%5Cright)%3Dx%5Ek

%5Cfrac%7B%5Cmathrm%7Bd%7Df_%7Bk%2B1%7D%5Cleft(x%5Cright)%7D%7B%5Cmathrm%7Bd%7Dx%7D%3D%5Cleft(k%2B1%5Cright)f_k%5Cleft(x%5Cright)%3D%5Cleft(k%2B1%5Cright)x%5Ek

f_%7Bk%2B1%7D%5Cleft(x%5Cright)%3Dx%5E%7Bk%2B1%7D%2BC.

f_%7Bk%2B1%7D%5Cleft(0%5Cright)%3D0%3DC,所以f_1%5Cleft(x%5Cright)%3Dx%5E%7Bk%2B1%7D.

所以原命題對n%3Dk%2B1成立.

所以原命題得證,即f_n%5Cleft(x%5Cright)%3Dx%5En%5Cleft(x%5Cin%5Cmathbb%7BN%7D%5E*%5Cright).

f_%7B100%7D%5Cleft(2023%5Cright)%3D2023%5E%7B100%7D%3D%5Cleft(2020%2B3%5Cright)%5E%7B100%7D%5Cequiv%203%5E%7B100%7D%3D9%5E%7B50%7D%3D%5Cleft(10-1%5Cright)%5E%7B50%7D%5Cequiv%20-500%2B1%5Cequiv%201%20%5Cpmod%20%7B100%7D

所以f_%7B100%7D%5Cleft(2023%5Cright)在10進(jìn)制下的最后2位數(shù)為01.

2023浙江大學(xué)強(qiáng)基數(shù)學(xué)逐題解析(7)的評論 (共 條)

分享到微博請遵守國家法律
长沙市| 固阳县| 炎陵县| 桐梓县| 双牌县| 万载县| 甘德县| 普兰店市| 河津市| 龙南县| 腾冲县| 霍林郭勒市| 双江| 元谋县| 太和县| 黄平县| 涿鹿县| 包头市| 威信县| 公安县| 许昌市| 依安县| 中西区| 福贡县| 马龙县| 拜城县| 横峰县| 铅山县| 城步| 五峰| 凤山县| 双峰县| 罗平县| 黄石市| 土默特左旗| 凤凰县| 东兰县| 西丰县| 满城县| 屯门区| 湟源县|