最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

對(duì)根式相加為無理數(shù)的研究

2022-08-26 16:10 作者:奧博格沙特  | 我要投稿

(1)設(shè)a%2Cb%20%5Cin%20Q,%5Csqrt%7Ba%7D%2C%20%5Csqrt%7Bb%7D%20%5Cnotin%20Q,則%5Csqrt%7Ba%7D%20%2B%20%5Csqrt%7Bb%7D為無理數(shù).

如果不嚴(yán)格證明,該命題是“顯然”的,但我相信看這篇文章的朋友都希望得到一個(gè)嚴(yán)格的證明.

思路:反證法. 通過變形化為A%5Ctimes%20B%3DC(其中A%20%5Cin%20Q%2CB%20%5Cnotin%20Q%2C%20C%20%5Cin%20Q)的形式,再由有理數(shù)運(yùn)算封閉性得出矛盾.

證明:

假設(shè)%5Csqrt%7Ba%7D%2B%5Csqrt%7Bb%7D%3Dq,q%5Cin%20Q.

(%5Csqrt%7Ba%7D-q)%5E2%3D(%5Csqrt%7Bb%7D)%5E2

%5Cimplies%20a-2%5Csqrt%7Ba%7Dq%2Bq%5E2%3Db

%5Cimplies%20a-b%2Bq%5E2%3D2%5Csqrt%7Ba%7Dq

q%3D0,則a%3Db%3D0,與%5Csqrt%7Ba%7D%2C%5Csqrt%7Bb%7D%20%5Cnotin%20Q矛盾.

q%20%5Cneq%200

%5Cimplies%20%5Csqrt%7Ba%7D%3D%5Cfrac%7Ba-b%2Bq%5E2%7D%7B2q%7D%20

%5Csqrt%7Ba%7D%20%5Cnotin%20Q,%5Cfrac%7Ba-b%2Bq%5E2%7D%7B2q%7D%20%5Cin%20Q,矛盾!

%E2%88%B4%5Csqrt%7Ba%7D%2B%5Csqrt%7Bb%7D為無理數(shù).


(2)設(shè)a%2Cb%20%5Cin%20Q,%5Csqrt%5B3%5D%7Ba%7D%2C%20%5Csqrt%5B3%5D%7Bb%7D%20%5Cnotin%20Qa%2Bb%20%5Cneq%200,則%5Csqrt%5B3%5D%7Ba%7D%2B%5Csqrt%5B3%5D%7Bb%7D為無理數(shù).

思路:與(1)類似.

證明:

假設(shè)%5Csqrt%5B3%5D%7Ba%7D%2B%5Csqrt%5B3%5D%7Bb%7D%3Dqq%20%5Cin%20Q.

%5Cimplies%20a%2Bb%2B3%5Csqrt%5B3%5D%7Bab%7D(%5Csqrt%5B3%5D%7Ba%7D%2B%5Csqrt%5B3%5D%7Bb%7D)%3Dq%5E3(將等式兩邊三次方)

%5Cimplies%20a%2Bb%2B3q%5Csqrt%5B3%5D%7Bab%7D%3Dq%5E3

%E2%88%B5a%2Bb%20%5Cneq%200

%E2%88%B4q%20%5Cneq%200

%5Cimplies%20%5Csqrt%5B3%5D%7Bab%7D%20%3D%20%5Cfrac%7Bq%5E3-a-b%7D%7B3q%7D

%5Csqrt%5B3%5D%7Bab%7D%20%5Cnotin%20Q,

%5Cfrac%7Bq%5E3%20-%20a%20-%20b%7D%7B3q%7D%20%5Cin%20Q,矛盾!

%E2%88%B4%5Csqrt%5B3%5D%7Ba%7D%2B%5Csqrt%5B3%5D%7Bb%7D%20%5Cnotin%20Q

%5Csqrt%5B3%5D%7Bab%7D%20%5Cin%20Q,

x%20%3D%20%5Csqrt%5B3%5D%7Ba%7D%2C%20y%20%3D%20%5Csqrt%5B3%5D%7Bb%7D

x%2Cy%20%5Cnotin%20Q%2C%20x%2By%20%5Cin%20Q%2C%20xy%20%5Cin%20Q

%5Cimplies%20x-y%20%5Cnotin%20Q

(否則2x%3D(x%2By)%2B(x-y)%20%5Cin%20Q,矛盾?。?/p>

%E2%88%B5x%5E3-y%5E3%3D(x-y)(x%5E2%2Bxy%2By%5E2)%3D(x-y)%5B(x%2By)%5E2-xy%5D

x%5E3-y%5E3%3Da-b%20%5Cin%20Q,

x-y%20%5Cnotin%20Q,

(x%2By)%5E2-xy%20%5Cin%20Q

%E2%88%B4(x%2By)%5E2-xy%3D0,即x%5E2%2Bxy%2By%5E2%3D0

x為主元,

%5CDelta%20%3Dy%5E2-4y%5E2%3D-3y%5E2%5Cgeq%200

%5Cimplies%20y%3D0

%5Cimplies%20x%3D0

這與x%2Cy%20%5Cnotin%20Q矛盾.

%E2%88%B4x%2By%5Cnotin%20Q

綜上,%5Csqrt%5B3%5D%7Ba%7D%2B%5Csqrt%5B3%5D%7Bb%7D%20%5Cnotin%20Q

遺憾的是,該方法雖然巧妙,但很難在次數(shù)和項(xiàng)數(shù)上做推廣.


(3)將(2)作為引理,可得:

h(x)%20%5Cin%20Z%5Bx%5D,h(%5Csqrt%5B3%5D%7Bt%7D)%3D0t%20%5Cin%20Q,%5Csqrt%5B3%5D%7Bt%7D%20%5Cnotin%20Q),則h(x)有因式x%5E3-t.

證明:設(shè)h(x)%3D(x%5E3-t)q(x)%2Br(x)deg?r%5Cleq%202

x%3D%5Csqrt%5B3%5D%7Bt%7D%20%5Cimplies%20r(%5Csqrt%5B3%5D%7Bt%7D)%3D0

設(shè)r(x)%3Dax%5E2%2Bbx%2Bc,a%2Cb%2Cc%20%5Cin%20Q

a(%5Csqrt%5B3%5D%7Bt%7D)%5E2%2Bb(%5Csqrt%5B3%5D%7Bt%7D)%2Bc%3D0

a%2C%20b%20%5Cneq%200,

a%5E3t%5E2%2Bb%5E3t%20%5Cneq%200

(否則-%5Cfrac%7Bb%7D%7Ba%7D%3D%5Csqrt%5B3%5D%7Bt%7D,由有理數(shù)運(yùn)算封閉性可知矛盾)

由(2)中的結(jié)論可知:

%5Csqrt%5B3%5D%7Ba%5E3t%5E2%7D%2B%5Csqrt%5B3%5D%7Bb%5E3t%7D%20%5Cnotin%20Q,

a(%5Csqrt%5B3%5D%7Bt%7D)%5E2%2Bb(%5Csqrt%5B3%5D%7Bt%7D)%20%5Cnotin%20Q

%5Cimplies%200%3Da(%5Csqrt%5B3%5D%7Bt%7D)%5E2%2Bb(%5Csqrt%5B3%5D%7Bt%7D)%2Bc%20%5Cnotin%20Q

矛盾!

a%2Cb中恰有一數(shù)為0,

顯然也有a(%5Csqrt%5B3%5D%7Bt%7D)%5E2%2Bb(%5Csqrt%5B3%5D%7Bt%7D)%20%5Cnotin%20Q

矛盾!

%E2%88%B4a%3Db%3D0

%5Cimplies%20c%3D0

%5Cimplies%20r(x)%3D0

%E2%88%B4h(x)%3D(x%5E3-t)q(x)

Q.E.D.

注:x%5E3-t稱為%5Csqrt%5B3%5D%7Bt%7D的極小多項(xiàng)式.

事實(shí)上,證明(3)是我研究(2)的原因.


本文中的證明僅為個(gè)人方法,如有雷同,純屬巧合.

如果讀者有更好的方法,或者發(fā)現(xiàn)問題,歡迎指出!

對(duì)根式相加為無理數(shù)的研究的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
太保市| 沅江市| 宜川县| 芒康县| 北辰区| 监利县| 萍乡市| 米脂县| 阜宁县| 五寨县| 安宁市| 姚安县| 馆陶县| 芮城县| 花莲市| 贵阳市| 建湖县| 潢川县| 辉南县| 河间市| 建水县| 云林县| 抚松县| 五台县| 昌平区| 河池市| 克东县| 共和县| 定兴县| 凤翔县| 祁连县| 柞水县| 凤台县| 都昌县| 容城县| 招远市| 阿拉善左旗| 循化| 淮滨县| 阿瓦提县| 庆阳市|