【DELM分類】基于花朵授粉算法改進(jìn)深度學(xué)習(xí)極限學(xué)習(xí)機(jī)實(shí)現(xiàn)數(shù)據(jù)分類附matlab代碼
1 簡(jiǎn)介
人工神經(jīng)網(wǎng)絡(luò)的最大缺點(diǎn)是訓(xùn)練時(shí)間太長(zhǎng)從而限制其實(shí)時(shí)應(yīng)用范圍,近年來(lái),極限學(xué)習(xí)機(jī)(Extreme Learning Machine, ELM)的提出使得前饋神經(jīng)網(wǎng)絡(luò)的訓(xùn)練時(shí)間大大縮短,然而當(dāng)原始數(shù)據(jù)混雜入大量噪聲變量時(shí),或者當(dāng)輸入數(shù)據(jù)維度非常高時(shí),極限學(xué)習(xí)機(jī)算法的綜合性能會(huì)受到很大的影響.深度學(xué)習(xí)算法的核心是特征映射,它能夠摒除原始數(shù)據(jù)中的噪聲,并且當(dāng)向低維度空間進(jìn)行映射時(shí),能夠很好的起到對(duì)數(shù)據(jù)降維的作用,因此我們思考利用深度學(xué)習(xí)的優(yōu)勢(shì)特性來(lái)彌補(bǔ)極限學(xué)習(xí)機(jī)的弱勢(shì)特性從而改善極限學(xué)習(xí)機(jī)的性能.為了進(jìn)一步提升DELM預(yù)測(cè)精度,本文采用麻雀搜索算法進(jìn)一步優(yōu)化DELM超參數(shù),仿真結(jié)果表明,改進(jìn)算法的預(yù)測(cè)精度更高。





2 部分代碼
% --------------------------------------------------------------------%
% Flower pollenation algorithm (FPA), or flower algorithm ? ? ? ? ? ? %
% Programmed by Xin-She Yang @ May 2012 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? %
% --------------------------------------------------------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Notes: This demo program contains the very basic components of ? ? ?%
% the flower pollination algorithm (FPA), or flower algorithm (FA), ? %
% for single objective optimization. ? ?It usually works well for ? ? %
% unconstrained functions only. For functions/problems with ? ? ? ? ? %
% limits/bounds and constraints, constraint-handling techniques ? ? ? %
% should be implemented to deal with constrained problems properly. ? %
% ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? %
% Citation details: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? %
%1)Xin-She Yang, Flower pollination algorithm for global optimization,%
% Unconventional Computation and Natural Computation, ? ? ? ? ? ? ? ? %
% Lecture Notes in Computer Science, Vol. 7445, pp. 240-249 (2012). ? %
%2)X. S. Yang, M. Karamanoglu, X. S. He, Multi-objective flower ? ? ? %
% algorithm for optimization, Procedia in Computer Science, ? ? ? ? ? %
% vol. 18, pp. 861-868 (2013). ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc
clear all
close all
n=30; ? ? ? ? ? % Population size, typically 10 to 25
p=0.8; ? ? ? ? ? % probabibility switch
% Iteration parameters
N_iter=3000; ? ? ? ? ? ?% Total number of iterations
fitnessMSE = ones(1,N_iter);
% % Dimension of the search variables Example 1
d=2;
Lb = -1*ones(1,d);
Ub = 1*ones(1,d);
% % Dimension of the search variables Example 2
% d=3;
% Lb = [-2 -1 -1];
% Ub = [2 1 1];
%
% % Dimension of the search variables Example 3
% d=3;
% Lb = [-1 -1 -1];
% Ub = [1 1 1];
%
%
% % % Dimension of the search variables Example 4
% d=9;
% Lb = -1.5*ones(1,d);
% Ub = 1.5*ones(1,d);
% Initialize the population/solutions
for i=1:n,
? ?Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
? ?% To simulate the filters use fitnessX() functions in the next line
? ?Fitness(i)=fitness(Sol(i,:));
end
% Find the current best
[fmin,I]=min(Fitness);
best=Sol(I,:);
S=Sol;
% Start the iterations -- Flower Algorithm
for t=1:N_iter,
? ?% Loop over all bats/solutions
? ?for i=1:n,
? ? ? ?% Pollens are carried by insects and thus can move in
? ? ? ?% large scale, large distance.
? ? ? ?% This L should replace by Levy flights
? ? ? ?% Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest)
? ? ? ?if rand>p,
? ? ? ? ? ?%% L=rand;
? ? ? ? ? ?L=Levy(d);
? ? ? ? ? ?dS=L.*(Sol(i,:)-best);
? ? ? ? ? ?S(i,:)=Sol(i,:)+dS;
? ? ? ? ? ?% Check if the simple limits/bounds are OK
? ? ? ? ? ?S(i,:)=simplebounds(S(i,:),Lb,Ub);
? ? ? ? ? ?% If not, then local pollenation of neighbor flowers
? ? ? ?else
? ? ? ? ? ?epsilon=rand;
? ? ? ? ? ?% Find random flowers in the neighbourhood
? ? ? ? ? ?JK=randperm(n);
? ? ? ? ? ?% As they are random, the first two entries also random
? ? ? ? ? ?% If the flower are the same or similar species, then
? ? ? ? ? ?% they can be pollenated, otherwise, no action.
? ? ? ? ? ?% Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)
? ? ? ? ? ?S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));
? ? ? ? ? ?% Check if the simple limits/bounds are OK
? ? ? ? ? ?S(i,:)=simplebounds(S(i,:),Lb,Ub);
? ? ? ?end
? ? ? ?% Evaluate new solutions
? ? ? ?% To simulate the filters use fitnessX() functions in the next
? ? ? ?% line
? ? ? ?Fnew=fitness(S(i,:));
? ? ? ?% If fitness improves (better solutions found), update then
? ? ? ?if (Fnew<=Fitness(i)),
? ? ? ? ? ?Sol(i,:)=S(i,:);
? ? ? ? ? ?Fitness(i)=Fnew;
? ? ? ?end
? ? ? ?% Update the current global best
? ? ? ?if Fnew<=fmin,
? ? ? ? ? ?best=S(i,:) ? ;
? ? ? ? ? ?fmin=Fnew ? ;
? ? ? ?end
? ?end
? ?% Display results every 100 iterations
? ?if round(t/100)==t/100,
? ? ? ?best
? ? ? ?fmin
? ?end
? ?fitnessMSE(t) = fmin;
end
%figure, plot(1:N_iter,fitnessMSE);
% Output/display
disp(['Total number of evaluations: ',num2str(N_iter*n)]);
disp(['Best solution=',num2str(best),' ? fmin=',num2str(fmin)]);
figure(1)
plot( fitnessMSE)
xlabel('Iteration');
ylabel('Best score obtained so far');
3 仿真結(jié)果

4 參考文獻(xiàn)
[1]馬萌萌. 基于深度學(xué)習(xí)的極限學(xué)習(xí)機(jī)算法研究[D]. 中國(guó)海洋大學(xué), 2015.