最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Prime Dream(3)——Mertens的幾個(gè)漸進(jìn)公式

2022-03-05 08:20 作者:子瞻Louis  | 我要投稿

專欄文集:《Analysis》《雜文集》

EPD系列文集:《Prime Dream》

上一節(jié)里扯到了下面這樣的漸進(jìn)公式:

  • #)%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7Bp%7D%3D%5Clog%20x%2B%5Cmathcal%20O(1)

它被稱為Mertens第一定理,通過(guò)右式發(fā)散便能得到Euclid定理,此外,可以由他出發(fā)得到另外的與素?cái)?shù)有關(guān)的漸進(jìn)公式。本文出現(xiàn)的兩個(gè)公式是由Mertens本人提出的,它們與Mertens第一定理可以被共同稱為Mertens公式,而最后一個(gè)公式又被稱為Mertens第二定理

素?cái)?shù)的倒數(shù)和

引入一個(gè)常數(shù)——Mertens常數(shù)

M%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p-%5Clog%5Clog%20x

它在定義上與Euler常數(shù)十分類似,不過(guò)我們需要說(shuō)明這個(gè)式子是有意義的,即要說(shuō)明右側(cè)確實(shí)是收斂到某個(gè)常數(shù)的。為了簡(jiǎn)便,這里會(huì)采用以下記號(hào):

%5Cint_%7Bc-%7D%5Ex%3A%3D%5Clim_%7B%5Cdelta%5Cto%2B0%7D%5Cint_%7Bc-%5Cdelta%7D%5Ex

首先令

R(x)%3A%3D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7Dp-%5Clog%20x

由Mertens第一定理可知R(x)%3D%5Cmathcal%20O(1).根據(jù)Riemann-Stieltjes積分的分部積分,有

%5Cbegin%7Baligned%7D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p%26%3D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1%7B%5Clog%20p%7D%5Ccdot%5Cfrac%7B%5Clog%20p%7Dp%5C%5C%26%3D%5Cint_%7B2-%7D%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20d%5Csum_%7Bp%5Cle%20t%7D%5Cfrac%7B%5Clog%20p%7Dp%5C%5C%26%3D%5Cint_%7B2-%7D%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20d%5Clog%20t%2B%5Cint_%7B2-%7D%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dR(t)%5C%5C%26%3D%5Clog%5Clog%20x-%5Clog%5Clog2%2B%5Cfrac%7BR(x)%7D%7B%5Clog%20x%7D-%5Cfrac%7BR(2)%7D%7B%5Clog2%7D%2B%5Cint_%7B2-%7D%5Ex%5Cfrac%7BR(t)%7D%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

于是,可得

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p-%5Clog%5Clog%20x%3D1-%5Clog%5Clog2%2B%5Cint_%7B2-%7D%5E%5Cinfty%5Cfrac%7BR(t)%7D%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt

顯然右式收斂到一個(gè)常數(shù),即Mertens常數(shù),將它代回式中,可得:

%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p%3D%5Clog%5Clog%20x%2BM%2B%5Cfrac%7BR(x)%7D%7B%5Clog%20x%7D-%5Cint_%7Bx%7D%5E%5Cinfty%5Cfrac%7BR(t)%7D%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt

其中

%5Cleft%7C%5Cint_%7Bx%7D%5E%5Cinfty%5Cfrac%7BR(t)%7D%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt%5Cright%7C%5Cle%20%5Cleft%7C%5Cint_%7Bx%7D%5E%5Cinfty%5Cfrac1%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt%5Cright%7C%3D%5Cfrac1%7B%5Clog%20x%7D

因此,我們得到素?cái)?shù)倒數(shù)和的漸進(jìn)公式:

  • 1)%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p%3D%5Clog%5Clog%20x%2BM%2B%5Cmathcal%20O%5Cleft(%5Cfrac1%7B%5Clog%20x%7D%5Cright)

在上式中令x%3De%5Et,則有

%5Csum_%7Bp%5Cle%20e%5Et%7D%5Cfrac1p%3D%5Clog%20t%2BM%2B%5Cmathcal%20O%5Cleft(%5Cfrac1t%5Cright)

對(duì)比自然數(shù)的倒數(shù)和

%5Csum_%7Bn%5Cle%20t%7D%5Cfrac1n%3D%5Clog%20t%2B%5Cgamma%2B%5Cmathcal%20O%5Cleft(%5Cfrac1t%5Cright)

發(fā)現(xiàn)他們異常相似。沒(méi)錯(cuò),數(shù)學(xué)就是這么神奇!

Mertens公式

考慮zeta函數(shù)的歐拉乘積的對(duì)數(shù),分離出素zeta函數(shù)

%5Cbegin%7Baligned%7D%5Clog%5Czeta(s)%26%3D%5Csum_%7Bp%7D%5Clog%5Cfrac1%7B1-p%5E%7B-s%7D%7D%5C%5C%26%3D%5Csum_%7Bp%7D%5Cfrac1%7Bp%5E%7Bs%7D%7D%2B%5Csum_%7Bp%7D%5Cleft(%5Clog%5Cfrac1%7B1-p%5E%7B-s%7D%7D-%5Cfrac1%7Bp%5Es%7D%5Cright)%5Cend%7Baligned%7D

那么分離出來(lái)它有什么用呢?我們都知道這個(gè)等式在s=1處是發(fā)散的,但是,第二個(gè)和式在s=1時(shí)是收斂的:

%5Cbegin%7Baligned%7D%5Csum_%7Bp%3Ex%7D%5Cleft(%5Clog%5Cfrac1%7B1-p%5E%7B-1%7D%7D-%5Cfrac1%7Bp%7D%5Cright)%26%3D%5Csum_%7Bp%3Ex%7D%5Csum_%7Bn%3D2%7D%5E%5Cinfty%5Cfrac1%7Bnp%5E%7Bn%7D%7D%5C%5C%26%5Cle%5Cfrac12%5Csum_%7Bp%3Ex%7D%5Csum_%7Bn%3D2%7D%5E%5Cinfty%5Cfrac1%7Bp%5E%7Bn%7D%7D%5C%5C%26%3D%5Cfrac12%5Csum_%7Bp%3Ex%7D%5Cleft(%5Cfrac1%7Bp-1%7D-%5Cfrac1p%5Cright)%5C%5C%26%3C%5Csum_%7Bn%3Ex%20%7D%5Cleft(%5Cfrac1%7Bn-1%7D-%5Cfrac1n%5Cright)%3D%5Cfrac1%7B%5Bx%5D%7D%5Cend%7Baligned%7D

接著研究左側(cè)式子,令s%3D1%2B%5Cepsilon%2C(0%3C%5Cepsilon%3C1),有

%5Cbegin%7Baligned%7D%5Czeta(1%2B%5Cepsilon)-%5Cfrac1%5Cepsilon%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E%7B1%2B%5Cepsilon%7D%7D-%5Cint_1%5E%5Cinfty%5Cfrac1%7Bu%5E%7B1%2B%5Cepsilon%7D%7D%5Cmathrm%20du%5C%5C%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cint_n%5E%7Bn%2B1%7D%5Cfrac1%7Bn%5E%7B1%2B%5Cepsilon%7D%7D-%5Cfrac1%7Bu%5E%7B1%2B%5Cepsilon%7D%7D%5Cmathrm%20du%5C%5C%26%5Cle%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5E%7B1%2B%5Cepsilon%7D%7D-%5Cfrac1%7B(n%2B1)%5E%7B1%2B%5Cepsilon%7D%7D%5Cle1%5Cend%7Baligned%7D

由此得到

%5Clog%5Czeta(1%2B%5Cepsilon)%3D%5Clog%5Cleft(%5Cfrac1%5Cepsilon%2B%5Cmathcal%20O(1)%5Cright)%3D%5Clog%5Cfrac1%5Cepsilon%2B%5Clog(1%2B%5Cmathcal%20O(%5Cepsilon))%3D%5Clog%5Cfrac1%5Cepsilon%2BO(%5Cepsilon)

又有:

%5Clog%5Cfrac%7B1-e%5E%7B-%5Cepsilon%7D%7D%7B%5Cepsilon%7D%3D%5Clog(1%2B%5Cmathcal%20O(%5Cepsilon))%3D%5Cmathcal%20O(%5Cepsilon)

于是

%5Cbegin%7Baligned%7D%5Clog%5Czeta(1%2B%5Cepsilon)%26%3D%5Clog%5Cfrac1%7B1-e%5E%7B-%5Cepsilon%7D%7D%2B%5Clog%5Cfrac%7B1-e%5E%7B-%5Cepsilon%7D%7D%7B%5Cepsilon%7D%2B%5Cmathcal%20O(%5Cepsilon)%5C%5C%26%3D%5Clog%5Cfrac1%7B1-e%5E%7B-%5Cepsilon%7D%7D%2B%5Cmathcal%20O(%5Cepsilon)%5Cend%7Baligned%7D

代入到分離素zeta函數(shù)后的歐拉乘積中,

%5Clog%5Cfrac1%7B1-e%5E%7B-%5Cepsilon%7D%7D%2B%5Cmathcal%20O(%5Cepsilon)%3D%5Csum_%7Bp%7D%5Cfrac1%7Bp%5E%7B1%2B%5Cepsilon%7D%7D%2B%5Csum_%7Bp%7D%5Cleft(%5Clog%5Cfrac1%7B1-p%5E%7B-1-%5Cepsilon%7D%7D-%5Cfrac1%7Bp%5E%7B1%2B%5Cepsilon%7D%7D%5Cright)

圍繞上式,接下來(lái)考慮除收斂部分外的兩項(xiàng)的差,記

H(t)%3A%3D%5Csum_%7Bn%5Cle%20t%7D%5Cfrac1n%2CP(t)%3A%3D%5Csum_%7Bp%5Cle%20t%7D%5Cfrac1p

由Riemann-Stieltjes積分的分部積分,

%5Cbegin%7Baligned%7D%5Clog%5Cfrac1%7B1-e%5E%7B-%5Cepsilon%7D%7D%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Be%5E%7B-%5Cepsilon%20n%7D%7Dn%5C%5C%26%3D%5Cint_%7B0%7D%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dH(t)%5C%5C%26%3D%5Cepsilon%5Cint_%7B0%7D%5E%5Cinfty%20H(t)e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

%5Cbegin%7Baligned%7D%5Csum_%7Bp%7D%5Cfrac1%7Bp%5E%7B1%2B%5Cepsilon%7D%7D%26%3D%5Cint_%7B1%7D%5E%5Cinfty%5Cfrac1%7Bu%5E%5Cepsilon%7D%5Cmathrm%20dP(u)%5C%5C%26%3D%5Cint_%7B0%7D%5E%5Cinfty%20e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dP(e%5Et)%5C%5C%26%3D%5Cepsilon%5Cint_%7B0%7D%5E%5Cinfty%20P(e%5Et)e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

由此可得

%5Clog%5Cfrac1%7B1-e%5E%7B-%5Cepsilon%7D%7D-%5Csum_%7Bp%7D%5Cfrac1%7Bp%5E%7B1%2B%5Cepsilon%7D%7D%3D%5Cepsilon%5Cint_%7B0%7D%5E%5Cinfty%20(H(t)-P(e%5Et))e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dt

根據(jù)H(t)與P(t)的漸進(jìn)公式,得

H(t)-P(e%5Et)%3D%5Cgamma-M%2B%5Cmathcal%20O%5Cleft(%5Cfrac1t%5Cright)

于是

%5Cbegin%7Baligned%7D%5Clog%5Cfrac1%7B1-e%5E%7B-%5Cepsilon%7D%7D-%5Csum_%7Bp%7D%5Cfrac1%7Bp%5E%7B1%2B%5Cepsilon%7D%7D%26%3D%5Cgamma-M%2B%5Cmathcal%20O%5Cleft(%5Cepsilon%5Cint_%7B0%7D%5E%5Cinfty%20%5Cfrac1%7Bt%2B1%7D%20e%5E%7B-%5Cepsilon%20t%7D%5Cmathrm%20dt%5Cright)%5C%5C%26%3D%5Cgamma-M%2B%5Cmathcal%20O%5Cleft(%5Cepsilon%5Clog%20%5Cfrac1%5Cepsilon%5Cright)%5Cend%7Baligned%7D

再次代回到歐拉乘積中,并令%5Cepsilon%5Cto%200,得到

%5Cgamma-M%3D%5Csum_%7Bp%7D%5Cleft(%5Clog%5Cfrac1%7B1-p%5E%7B-1%7D%7D-%5Cfrac1%7Bp%7D%5Cright)

將右式分為不大于x與大于x的兩部分和,由前文的

%5Csum_%7Bp%3Ex%7D%5Cleft(%5Clog%5Cfrac1%7B1-p%5E%7B-1%7D%7D-%5Cfrac1%7Bp%7D%5Cright)%5Cll%5Cfrac1x

以及素?cái)?shù)倒數(shù)和的漸進(jìn)公式,可得

%5Cbegin%7Baligned%7D%5Csum_%7Bp%5Cle%20x%7D%5Clog%5Cleft(1-%5Cfrac1p%5Cright)%26%3DM_0-%5Cgamma-%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p%2BO%5Cleft(%5Cfrac1%7Bx%7D%5Cright)%5C%5C%26%3D-%5Cgamma-%5Clog%5Clog%20x%2B%5Cmathcal%20O%5Cleft(%5Cfrac1%7B%5Clog%20x%7D%5Cright)%5Cend%7Baligned%7D

取e的冪,根據(jù)

%5Cexp%7B%5Cmathcal%20O%5Cleft(%5Cfrac1%7B%5Clog%20x%7D%5Cright)%7D%3D1%2B%5Cmathcal%20O%5Cleft(%5Cfrac1%7B%5Clog%20x%7D%5Cright)

就能得到大名鼎鼎的Mertens公式了:

  • 2)%5Cprod_%7Bp%5Cle%20x%7D%5Cleft(1-%5Cfrac1p%5Cright)%3D%5Cfrac%7Be%5E%7B-%5Cgamma%7D%7D%7B%5Clog%20x%7D%5Cleft(1%2B%5Cmathcal%20O%5Cleft(%5Cfrac1%7B%5Clog%20x%7D%5Cright)%5Cright)

Tchebyshev定理

在之前一期專欄中得到了

A%5Cle%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%5Cle%20B

這里就來(lái)研究一下中間函數(shù)的上確界與下確界吧,設(shè)

l%3A%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cinf%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx%2CL%3A%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Csup%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx

對(duì)%5Cepsilon%3E0,存在x_0%5Cge2,使得t%3Ex_0時(shí),

l-%5Cepsilon%5Cle%5Cfrac%7B%5Cpi(t)%5Clog%20t%7D%7Bt%7D%5CRightarrow%5Cpi(t)%5Cge(l-%5Cepsilon)%5Cfrac%20t%7B%5Clog%20t%7D

利用素?cái)?shù)計(jì)數(shù)函數(shù),有

%5Cbegin%7Baligned%7D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p%5Cge%5Cint_%7Bx_0%7D%5Ex%5Cfrac%7B%5Cmathrm%20d%20%5Cpi(t)%7Dt%26%3D%5Cfrac%7B%5Cpi(x)%7Dx-%5Cfrac%7B%5Cpi(x_0)%7D%7Bx_0%7D%2B%5Cint_%7Bx_0%7D%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%5E2%7D%5Cmathrm%20dt%5C%5C%26%5Cge%20o(1)-1%2B(l-%5Cepsilon)%5Cint_%7Bx_0%7D%5Ex%5Cfrac1%7Bt%5Clog%20t%7D%5Cmathrm%20dt%5C%5C%26%3D(l-%5Cepsilon)(%5Clog%5Clog%20x-%5Clog%5Clog%20x_0)-1%2Bo(1)%5Cend%7Baligned%7D

根據(jù)素?cái)?shù)倒數(shù)和的漸進(jìn)公式,可知l-%5Cepsilon%5Cle1又由%5Cepsilon任意小,得到l%5Cle1,類似的又有

%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p%5Cle(L%2B%5Cepsilon)(%5Clog%5Clog%20x-%0A%5Clog%5Clog%20x_0)%2B%5Cmathcal%20O(1)

從而l%5Cle1%5Cle%20L,即

  • 3)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cinf%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx%5Cle1%5Cle%5Clim_%7Bx%5Cto%5Cinfty%7D%5Csup%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx

此時(shí)的結(jié)論已經(jīng)夠強(qiáng)了,如果能證明%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D的極限存在,那么其必收斂到1,然而素?cái)?shù)定理的證明難就難在其極限存在性僅用初等方法是不容易確定的,因此人們會(huì)尋找更強(qiáng)更有力的方法來(lái)解決它——解析方法。不出意外的話下一期就要進(jìn)入漫漫解析路了

參考

  1. 《解析與概率數(shù)論導(dǎo)引》by G.特倫鮑姆

  2. Meten定理與素?cái)?shù)定理 by?TravorLZH:https://zhuanlan.zhihu.com/p/338578631


Prime Dream(3)——Mertens的幾個(gè)漸進(jìn)公式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
衡南县| 合水县| 洛隆县| 榆社县| 清徐县| 常熟市| 遂平县| 德惠市| 靖边县| 翁源县| 七台河市| 饶河县| 丰宁| 新兴县| 亳州市| 余姚市| 渭源县| 英超| 泌阳县| 丁青县| 临城县| 灵川县| 康乐县| 都兰县| 靖江市| 扎囊县| 长丰县| 弥勒县| 阳高县| 永年县| 南康市| 都江堰市| 高平市| 临沂市| 自治县| 辽阳县| 开封县| 巴中市| 萨嘎县| 会宁县| 岫岩|